This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression probl...This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effec- tiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM sig- nificantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification.展开更多
基金Supported by the High Technology Research and Devel-opment Program of China (No.2006AA01Z150)the Key Project of the National Natural Science Foundation of China (No.60373101)+1 种基金the Natural Science Foundation of Heilongjiang Province (No.F2007-14)the Project of Heilongjiang Outstanding Young University Teacher (No. 1151G037).
文摘This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effec- tiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM sig- nificantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification.