该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。...该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。首先,对电能质量扰动信号进行离散小波分解,计算Tsallis小波熵作为特征向量;然后利用所提出的Rank-WSVM多标签分类器进行分类。仿真结果表明,在不同噪声条件下,该方法有效改善了Rank-SVM的分类性能,可有效识别电压暂降、电压暂升、电压短时中断、脉冲暂态、振荡暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。展开更多
Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these...Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.展开更多
针对目前危险性分级方法的不足,提出了基于故障树分析(fault tree analysis,FTA)与最小支持向量机(least square support vector machine,LS-SVM)的航空部件危险性定量分级方法。首先通过布尔代数法对FTA进行逻辑描述,采用概率重要度表...针对目前危险性分级方法的不足,提出了基于故障树分析(fault tree analysis,FTA)与最小支持向量机(least square support vector machine,LS-SVM)的航空部件危险性定量分级方法。首先通过布尔代数法对FTA进行逻辑描述,采用概率重要度表示部件失效的后果严重程度,在此基础上通过LS-SVM对航空部件的危险性进行分级。实例证明,该方法能够准确地反映航空部件对飞行安全的影响。展开更多
为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征...为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征进行积累排序来选择最佳特征子集,通过专家模块以无监督的方式选择适当的实例来训练用于检测DDoS攻击流量的支持向量机(SVM)二值分类器,从而实现从数据集中选择小批量训练样本来产生高精度的网络流量分类.实验结果表明,与现有方法相比,本文算法在分类准确率和执行速度方面均优于现有方法.展开更多
文摘该文提出一种多标签排位小波支持向量机(rank wavelet support vector machine,Rank-WSVM),并将其应用于电能质量复合扰动分类中。Rank-WSVM将小波技术与多标签排位支持向量机(Rank-SVM)结合,利用小波的优良特性提高分类器的整体性能。首先,对电能质量扰动信号进行离散小波分解,计算Tsallis小波熵作为特征向量;然后利用所提出的Rank-WSVM多标签分类器进行分类。仿真结果表明,在不同噪声条件下,该方法有效改善了Rank-SVM的分类性能,可有效识别电压暂降、电压暂升、电压短时中断、脉冲暂态、振荡暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。
基金supported by the National High-Tech Research and Development 863 Program of China under Grant No. 2006AA12A106
文摘Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.
文摘针对目前危险性分级方法的不足,提出了基于故障树分析(fault tree analysis,FTA)与最小支持向量机(least square support vector machine,LS-SVM)的航空部件危险性定量分级方法。首先通过布尔代数法对FTA进行逻辑描述,采用概率重要度表示部件失效的后果严重程度,在此基础上通过LS-SVM对航空部件的危险性进行分级。实例证明,该方法能够准确地反映航空部件对飞行安全的影响。
文摘为了在高速网络环境下对大容量网络流量进行准确和快速的分类,以检测分布式拒绝服务(Distributed Denial of Service,DDoS)攻击,本文提出一种基于并行积累排序算法和主动学习的DDoS攻击检测算法.该技术采用并行积累排序算法对流量特征进行积累排序来选择最佳特征子集,通过专家模块以无监督的方式选择适当的实例来训练用于检测DDoS攻击流量的支持向量机(SVM)二值分类器,从而实现从数据集中选择小批量训练样本来产生高精度的网络流量分类.实验结果表明,与现有方法相比,本文算法在分类准确率和执行速度方面均优于现有方法.