Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at ...Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.展开更多
[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional ...[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional cultivar ZS10, were compared through two field experiments. In Experiment 1, seed yield and optimum N application rate were assessed in the field with five N application treatments. In Expedment 2, N was applied uniformly at 180 kg/hm2, and plant biomass and N accumulation were measured at several developmental stages, while N use efficien- cy was calculated for rape at maturity. [Results] The experiment 1 results showed that seed yields of ZY5628 and ZY7819 were both significantly higher than that of ZS10, and compared to ZS10, optimum yield (plateau yield) was higher by 18.7% and 20.2%, while the recommended N application rate was lower by 9.5% and 9.6% for ZY5628 and ZY7819, respectively. The experiment 2 results showed that during vegetative development, all three cultivars exhibited similar accumulations of plant biomass and N, but through flowering and maturity ZY5628 and ZY7819 pro- duced more biomass, acquired more N, and utilized acquired N more efficiently to- wards seed production than ZS10. [Conclusion] With equivalent inputs, the hybrid rapeseed cultivars ZY5628 and ZY7819 tested herein yield more seed with higher N use efficiency than the conventional rapeseed ZS10. This information will be valu- able for growers seeking to improve efficiency while reducing costs of rape production in China.展开更多
Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known a...Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.展开更多
Melatonin is a naturally occurring compound in plants. Here, we tested the effect of exogenous melatonin on rapeseed(Brassica napus L.) grown under salt stress. Application of 30 μmol L^-1 melatonin alleviated salt...Melatonin is a naturally occurring compound in plants. Here, we tested the effect of exogenous melatonin on rapeseed(Brassica napus L.) grown under salt stress. Application of 30 μmol L^-1 melatonin alleviated salt-induced growth inhibition, and the shoot fresh weight, the shoot dry weight, the root fresh weight, and the root dry weight of seedlings treated with exogenous melatonin increased by 128.2, 142.9, 122.2, and 124.2%, respectively, compared to those under salt stress. In addition, several physiological parameters were evaluated. The activities of antioxidant enzymes including peroxidase(POD), catalase(CAT) and ascorbate peroxidase(APX) were enhanced by 16.5, 19.3, and 14.2% compared to their activities in plants without exogenous melatonin application under salt stress, while the H2O2 content was decreased by 11.2% by exogenous melatonin. Furthermore, melatonin treatment promoted solute accumulation by increasing the contents of proline(26.8%), soluble sugars(15.1%) and proteins(58.8%). The results also suggested that higher concentrations(〉50 μmol L^-1) of melatonin could attenuate or even prevent the beneficial effects on seedling development. In conclusion, application of a low concentration of exogenous melatonin to rapeseed plants under salt stress can improve the H2O2-scavenging capacity by enhancing the activities of antioxidant enzymes such as POD, CAT and APX, and can also alleviate osmotic stress by promoting the accumulation of osmoregulatory substances such as soluble proteins, proline, and water soluble glucan. Ultimately, exogenous melatonin facilitates root development and improves the biomass of rapeseed seedlings grown under salt stress, thereby effectively alleviating the damage of salt stress in rapeseed seedlings.展开更多
14 yellow-seeded rapeseed lines (Brassia napus L.) from different genetic sources were used to analyze diversity of testa pigments content, oil and protein content, and RAPD markers. The results showed that the anthoc...14 yellow-seeded rapeseed lines (Brassia napus L.) from different genetic sources were used to analyze diversity of testa pigments content, oil and protein content, and RAPD markers. The results showed that the anthocyanin and melanin were the most important pigments in testa and their content were responsible for the variation in seed color ranging from orange to black yellow, 14 yellow-seeded lines could be classified into 3 groups: high anthocyanin content group with anthocyanin content over 2. 54 mg g-1 DW, the seed color was light yellow or orange; low pigments content group with low content of anthocyanin and melanin, the testa was transparent and the seed color was light yellow, greenish yellow or twany; high melanin content group with melanin content over 178. 4U(A290nm) , the testa was black, the seed color was black yellow. Oil content changed from 36.2% to 45. 5%, protein content from 21.1% to 27.7% , and the correlation analysis revealed that the oil content is highly significantly negatively correlated with the protein content. The cluster analysis showed that the extensive genetic variation existed among 14 yellow-seeded lines by using unweighted paired group method with arithmetic average (UPGMA) based on RAPD markers which were amplified with decamer primers, the genetic similarity among them ranged from 0. 25 to 0.909, and 14 yellow-seeded lines could put into 2 clusters corresponding to genome difference.展开更多
Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive...Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive genes. Quantitative real-time PCR (qRT-PCR) is essential for detecting the expression of the interested genes, of which the selection of suitable reference genes is a crucial step before qRT-PCR. To date, reliable reference genes to normalize qRT-PCR data under different nutrient deficiencies have not been reported in plants. In this study, expression of ten candidate reference genes was detected in leaves and roots of rapeseed (Brassica napus L.) after implementing different nutrient deficiencies for 14 days. These candidate genes, included two traditionally used reference genes and eight genes selected from an RNA- Seq dataset. Two software packages (GeNorm, NormFinder) were employed to evaluate candidate gene stability. Results showed that VHA-E1 was the highest-ranked gene in leaves of nutrient-deficient rapeseed, while VHA-G1 and UBC21 were most stable in nutrient-deficient roots. When rapeseed leaves and roots were combined, UBC21, HTB1, VHA-G1 and A CT7 were most stable among all samples. To evaluate the stabilities of the highest-ranked genes, the relative expression of two target genes, BnTrxl;1 and BnPhtl;3 Were further determined. The results showed that the relative expression of BnTrxl;1 depended on reference gene selection, suggesting that it's necessary to evaluate the stability of reference gene prior to qRT-PCR. This study provides suitable reference genes for gene expression analysis of rapeseed responses to different nutrient deficiencies, which is essential for elucidation of mechanisms underlying rapeseed responses to multiple nutrient deficiency stresses展开更多
To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of wate...To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlogging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and photochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA content under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective inalleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.展开更多
As a big rapeseed (Brassica napus L.) producing and consuming country, China provides more and more rapeseea oil year by year. With the development of demand for rapeseed and import of edible oil, rapeseed breeding ...As a big rapeseed (Brassica napus L.) producing and consuming country, China provides more and more rapeseea oil year by year. With the development of demand for rapeseed and import of edible oil, rapeseed breeding and production is fac- ing a great challenge. New situation has proposed higher requirements to yield, oil quality and safety, etc. In the review, some aspects about rapeseed breeding in China were reported, including breeding of high-oil content rapeseed, breeding of extremely early-maturing rapeseed, development of mechanization and development of chemical emasculation. Some prospects and expec- tations were also proposed.展开更多
Rapeseed(Brassica napus L.) is the world?s second produced oilseed and accounts for nearly 12% of world major vegetable oil production.For the last 10 years,the production,planting area,and yield of rapeseed have been...Rapeseed(Brassica napus L.) is the world?s second produced oilseed and accounts for nearly 12% of world major vegetable oil production.For the last 10 years,the production,planting area,and yield of rapeseed have been stable,with improvement of seed quality and especially seed oil content.This paper presented the worldwide rapeseed research by using the bibliometric analysis of papers published during the period 2011–2021.In total,7617 articles and reviews were included in this analysis.Our results showed that the global publication on rapeseed increased substantially in the past 11 years,and the number of publications of China grew significantly in particular.China was the largest contributor to rapeseed research with higher H-index value and number of citations compared to the other countries.China also had the largest number of leading universities and institutions,of which Huazhong Agricultural University was the most productive.The scientific mapping including co-authorship network of countries/regions and authors,and co-occurrence network of author keywords were analyzed using VOSviewer software.The most common rapeseed research topics included oil,rapeseed meal,yield,biodiesel,fatty acids,salt stress,and proteins,while the current research focused on topics such as:abiotic stress,evolution,expression analysis,phylogenetic analysis,heterosis,polyploidy,and transcriptomics.This paper depicts the knowledge structure of current global rapeseed research that may help direct the future studies for relevant researchers.展开更多
[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridi...[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridization, a new breeding material Mian 7MB-1 in three-line genic temporary maintainer line propagated by tissue culture was used to improve the sterile plant rate of rapeseed in dual-purpose recessive GMS line, such as Mian 7AB type, S45AB type, and etc. And then the variety comparative test was performed. [Result] In order to avoid some fertility restoration phenomena occurring during the process of self-reproduction, Mian 7AB was propagated in bulk with somatic tissue culture of temporary maintainer line plant stem. The propagated temporary maintainer line seedlings were applied to the breeding and seed production of net room male sterile line parent, promoting the sterile plant rate of the male sterile line parent to 91.7% -93.5%. The male sterile line parents per hectare were enough for the seed production of hybrid F1 in 7 500 -15 000 hm^2. [ Conclusion ] Compared with the original dual-purpose GMS line, the seed production ultilizing male sterile line with high sterile plant rate greatly reduced the labor, significantly improved the seed yield, ensuring the seed quality and forming a perfect breeding and seed production system.展开更多
A breeding strategy for widening the germplasm of Brassica napus was proposed by introgression of the A^r subgenome of B. rapa (A^rA^r) and C^c of B. carinata (B^cB^cC^cC^c) into natural B. napus (AnAncncn). The...A breeding strategy for widening the germplasm of Brassica napus was proposed by introgression of the A^r subgenome of B. rapa (A^rA^r) and C^c of B. carinata (B^cB^cC^cC^c) into natural B. napus (AnAncncn). The progenies with 38 chromosomes that were derived from the self-pollinated seeds of pentaploid hybrids (A^rA^nB^cC^cC^n) were used for further research. Some of the partial new-typed B. napus showed normal meiotic behavior, high portion of germinated pollen and normal embryological development. This indicates that the selected new-typed B. napus had a balanced genetic base. Molecular analysis showed that about 50% of the genome in the new-typed B. napus was replaced by A^r and C^c subgenome from B. rapa and B. carinata. Considering the genetic diversity among different lines of new-typed B. napus, it was deduced that the introgression of the genomic components from B, rapa and B. carinata could widen the genetic diversity of rapeseed.展开更多
[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two...[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.展开更多
[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ...[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.展开更多
RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of wate...RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of waterlogging tolerance beyond natural variation. A total of 2 977 genes with similar expression patterns and 17 genes with opposite expression patterns were identiifed in the transcription proifles of ZS9 and GH01. An additional 1 438 genes in ZS9 and 1 861 genes in GH01 showed strain speciifc regulation. Analysis of the overlapped genes between ZS9 and GH01 revealed that waterlogging tolerance is determined by ability to regulate genes with similar expression patterns. Moreover, differences in both gene expression proifles and abscisic acid (ABA) contents between the two varieties suggest that ABA may play some role in waterlogging tolerance. This study identiifes a subset of candidate genes for further functional analysis.展开更多
Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great ...Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity.展开更多
In the last decade,some disease occurred on our experimental farms that had caused serious losses.They were not caused by fungi,bacteria or viruses.By loop-mediated isothermal amplification(LAMP)technique,the detectio...In the last decade,some disease occurred on our experimental farms that had caused serious losses.They were not caused by fungi,bacteria or viruses.By loop-mediated isothermal amplification(LAMP)technique,the detection results pointed to the possible pathogen as phytoplasma.The investigation results implied that phytoplasmas could cause more than 13 kinds of symptoms in almost all parts of plants in B.napus L.,including witches’broom,multi-stems,aggregate main inflorescences,and flat stems.The incidences of these phytoplasma-associated diseases in our experimental farms rose from 1.61%in 2010 to 6.00%in 2021.Some phytoplasma infected plants died without any growing points.These studies would be helpful for detecting phytoplasmas diseases,selecting disease resistant germplasm and improving varieties with disease resistances in B.napus L.展开更多
文摘Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.
基金Supported by the Central Public Interest Scientific Institution Basal Research Fund(1610172009003)the National Scientific Support Program of China(2010BAD01B05)~~
文摘[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional cultivar ZS10, were compared through two field experiments. In Experiment 1, seed yield and optimum N application rate were assessed in the field with five N application treatments. In Expedment 2, N was applied uniformly at 180 kg/hm2, and plant biomass and N accumulation were measured at several developmental stages, while N use efficien- cy was calculated for rape at maturity. [Results] The experiment 1 results showed that seed yields of ZY5628 and ZY7819 were both significantly higher than that of ZS10, and compared to ZS10, optimum yield (plateau yield) was higher by 18.7% and 20.2%, while the recommended N application rate was lower by 9.5% and 9.6% for ZY5628 and ZY7819, respectively. The experiment 2 results showed that during vegetative development, all three cultivars exhibited similar accumulations of plant biomass and N, but through flowering and maturity ZY5628 and ZY7819 pro- duced more biomass, acquired more N, and utilized acquired N more efficiently to- wards seed production than ZS10. [Conclusion] With equivalent inputs, the hybrid rapeseed cultivars ZY5628 and ZY7819 tested herein yield more seed with higher N use efficiency than the conventional rapeseed ZS10. This information will be valu- able for growers seeking to improve efficiency while reducing costs of rape production in China.
基金supported by the Key Research and Development project of Hubei Province (Grant Nos. 2020BBB083, 2021BBA097 and 2021BBA102)the National Key Research and Development Program of China (Grant No. 2016YFD0100202)。
文摘Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS)the Hubei Agricultural Science and Technology Innovation Center, Chinathe Canola Key Industrial Innovation Team of Xiaogan, China
文摘Melatonin is a naturally occurring compound in plants. Here, we tested the effect of exogenous melatonin on rapeseed(Brassica napus L.) grown under salt stress. Application of 30 μmol L^-1 melatonin alleviated salt-induced growth inhibition, and the shoot fresh weight, the shoot dry weight, the root fresh weight, and the root dry weight of seedlings treated with exogenous melatonin increased by 128.2, 142.9, 122.2, and 124.2%, respectively, compared to those under salt stress. In addition, several physiological parameters were evaluated. The activities of antioxidant enzymes including peroxidase(POD), catalase(CAT) and ascorbate peroxidase(APX) were enhanced by 16.5, 19.3, and 14.2% compared to their activities in plants without exogenous melatonin application under salt stress, while the H2O2 content was decreased by 11.2% by exogenous melatonin. Furthermore, melatonin treatment promoted solute accumulation by increasing the contents of proline(26.8%), soluble sugars(15.1%) and proteins(58.8%). The results also suggested that higher concentrations(〉50 μmol L^-1) of melatonin could attenuate or even prevent the beneficial effects on seedling development. In conclusion, application of a low concentration of exogenous melatonin to rapeseed plants under salt stress can improve the H2O2-scavenging capacity by enhancing the activities of antioxidant enzymes such as POD, CAT and APX, and can also alleviate osmotic stress by promoting the accumulation of osmoregulatory substances such as soluble proteins, proline, and water soluble glucan. Ultimately, exogenous melatonin facilitates root development and improves the biomass of rapeseed seedlings grown under salt stress, thereby effectively alleviating the damage of salt stress in rapeseed seedlings.
文摘14 yellow-seeded rapeseed lines (Brassia napus L.) from different genetic sources were used to analyze diversity of testa pigments content, oil and protein content, and RAPD markers. The results showed that the anthocyanin and melanin were the most important pigments in testa and their content were responsible for the variation in seed color ranging from orange to black yellow, 14 yellow-seeded lines could be classified into 3 groups: high anthocyanin content group with anthocyanin content over 2. 54 mg g-1 DW, the seed color was light yellow or orange; low pigments content group with low content of anthocyanin and melanin, the testa was transparent and the seed color was light yellow, greenish yellow or twany; high melanin content group with melanin content over 178. 4U(A290nm) , the testa was black, the seed color was black yellow. Oil content changed from 36.2% to 45. 5%, protein content from 21.1% to 27.7% , and the correlation analysis revealed that the oil content is highly significantly negatively correlated with the protein content. The cluster analysis showed that the extensive genetic variation existed among 14 yellow-seeded lines by using unweighted paired group method with arithmetic average (UPGMA) based on RAPD markers which were amplified with decamer primers, the genetic similarity among them ranged from 0. 25 to 0.909, and 14 yellow-seeded lines could put into 2 clusters corresponding to genome difference.
基金supported by the grants from the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013OCRI)the Excellent Young Scientist Fund of Chinese Academy of Agricultural Sciences(1610172015004)an open project funded by State Key Laboratory for the Conservation and Utilization of Subtropical Agro-bioresources,China(SKLCUSA-b201403)
文摘Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive genes. Quantitative real-time PCR (qRT-PCR) is essential for detecting the expression of the interested genes, of which the selection of suitable reference genes is a crucial step before qRT-PCR. To date, reliable reference genes to normalize qRT-PCR data under different nutrient deficiencies have not been reported in plants. In this study, expression of ten candidate reference genes was detected in leaves and roots of rapeseed (Brassica napus L.) after implementing different nutrient deficiencies for 14 days. These candidate genes, included two traditionally used reference genes and eight genes selected from an RNA- Seq dataset. Two software packages (GeNorm, NormFinder) were employed to evaluate candidate gene stability. Results showed that VHA-E1 was the highest-ranked gene in leaves of nutrient-deficient rapeseed, while VHA-G1 and UBC21 were most stable in nutrient-deficient roots. When rapeseed leaves and roots were combined, UBC21, HTB1, VHA-G1 and A CT7 were most stable among all samples. To evaluate the stabilities of the highest-ranked genes, the relative expression of two target genes, BnTrxl;1 and BnPhtl;3 Were further determined. The results showed that the relative expression of BnTrxl;1 depended on reference gene selection, suggesting that it's necessary to evaluate the stability of reference gene prior to qRT-PCR. This study provides suitable reference genes for gene expression analysis of rapeseed responses to different nutrient deficiencies, which is essential for elucidation of mechanisms underlying rapeseed responses to multiple nutrient deficiency stresses
文摘To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlogging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and photochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA content under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective inalleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-13)National Key Research and Development Plan(JFYS2016ZY03002156)+6 种基金Ministry of Agriculture Experimental Observation of the Upper Reaches of the Yangtze River Oil Crop Science Station(09203020)Sichuan Crop Breeding CommunityInnovation Ability Promotion Project of Sichuan Provincial Finance(2016zypz-013)Sichuan Province Innovation Team FundingNatural Science Foundation of China(NSFC31360262)Science and Technology Achievements Transformation Project of Sichuan Province(2017CC0052)SAAS Modern Agricultural Technology Special Fund(2015JSCX-012)
文摘As a big rapeseed (Brassica napus L.) producing and consuming country, China provides more and more rapeseea oil year by year. With the development of demand for rapeseed and import of edible oil, rapeseed breeding and production is fac- ing a great challenge. New situation has proposed higher requirements to yield, oil quality and safety, etc. In the review, some aspects about rapeseed breeding in China were reported, including breeding of high-oil content rapeseed, breeding of extremely early-maturing rapeseed, development of mechanization and development of chemical emasculation. Some prospects and expec- tations were also proposed.
文摘Rapeseed(Brassica napus L.) is the world?s second produced oilseed and accounts for nearly 12% of world major vegetable oil production.For the last 10 years,the production,planting area,and yield of rapeseed have been stable,with improvement of seed quality and especially seed oil content.This paper presented the worldwide rapeseed research by using the bibliometric analysis of papers published during the period 2011–2021.In total,7617 articles and reviews were included in this analysis.Our results showed that the global publication on rapeseed increased substantially in the past 11 years,and the number of publications of China grew significantly in particular.China was the largest contributor to rapeseed research with higher H-index value and number of citations compared to the other countries.China also had the largest number of leading universities and institutions,of which Huazhong Agricultural University was the most productive.The scientific mapping including co-authorship network of countries/regions and authors,and co-occurrence network of author keywords were analyzed using VOSviewer software.The most common rapeseed research topics included oil,rapeseed meal,yield,biodiesel,fatty acids,salt stress,and proteins,while the current research focused on topics such as:abiotic stress,evolution,expression analysis,phylogenetic analysis,heterosis,polyploidy,and transcriptomics.This paper depicts the knowledge structure of current global rapeseed research that may help direct the future studies for relevant researchers.
基金Supported by "11thFive-Year" Crop Breeding Research of SichuanProvince "11thFive-Year" Joint Breeding Research Project Fun-ding of Sichuan Province.~~
文摘[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridization, a new breeding material Mian 7MB-1 in three-line genic temporary maintainer line propagated by tissue culture was used to improve the sterile plant rate of rapeseed in dual-purpose recessive GMS line, such as Mian 7AB type, S45AB type, and etc. And then the variety comparative test was performed. [Result] In order to avoid some fertility restoration phenomena occurring during the process of self-reproduction, Mian 7AB was propagated in bulk with somatic tissue culture of temporary maintainer line plant stem. The propagated temporary maintainer line seedlings were applied to the breeding and seed production of net room male sterile line parent, promoting the sterile plant rate of the male sterile line parent to 91.7% -93.5%. The male sterile line parents per hectare were enough for the seed production of hybrid F1 in 7 500 -15 000 hm^2. [ Conclusion ] Compared with the original dual-purpose GMS line, the seed production ultilizing male sterile line with high sterile plant rate greatly reduced the labor, significantly improved the seed yield, ensuring the seed quality and forming a perfect breeding and seed production system.
基金This study was supported by High Project of Science and Technology in China (No. 2001AA21110103)Doctoral Foundation of Education Department in China (No. 20020504009).
文摘A breeding strategy for widening the germplasm of Brassica napus was proposed by introgression of the A^r subgenome of B. rapa (A^rA^r) and C^c of B. carinata (B^cB^cC^cC^c) into natural B. napus (AnAncncn). The progenies with 38 chromosomes that were derived from the self-pollinated seeds of pentaploid hybrids (A^rA^nB^cC^cC^n) were used for further research. Some of the partial new-typed B. napus showed normal meiotic behavior, high portion of germinated pollen and normal embryological development. This indicates that the selected new-typed B. napus had a balanced genetic base. Molecular analysis showed that about 50% of the genome in the new-typed B. napus was replaced by A^r and C^c subgenome from B. rapa and B. carinata. Considering the genetic diversity among different lines of new-typed B. napus, it was deduced that the introgression of the genomic components from B, rapa and B. carinata could widen the genetic diversity of rapeseed.
基金Supported by the Special Funds for Modern Agricultural (oilseed rape) Technical System (MATS) of Chinathe National Natural Science Foundation of China (NSFC) (31071372)~~
文摘[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.
基金Supported by Natural Science Foundation of Beijing City (4081001)National Agriculture Science and Technology Transformation FundProject (2009GB2A000001)~~
文摘[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.
文摘RNA sequencing of the sensitive GH01 variety of Brassica napus L. seedling roots under 12 h of waterlogging was compared with previously published data of the ZS9 tolerant variety to unravel genetic mechanisms of waterlogging tolerance beyond natural variation. A total of 2 977 genes with similar expression patterns and 17 genes with opposite expression patterns were identiifed in the transcription proifles of ZS9 and GH01. An additional 1 438 genes in ZS9 and 1 861 genes in GH01 showed strain speciifc regulation. Analysis of the overlapped genes between ZS9 and GH01 revealed that waterlogging tolerance is determined by ability to regulate genes with similar expression patterns. Moreover, differences in both gene expression proifles and abscisic acid (ABA) contents between the two varieties suggest that ABA may play some role in waterlogging tolerance. This study identiifes a subset of candidate genes for further functional analysis.
基金Funds were provided by the National Key Research and Development Program of China (2018YFD1000900)
文摘Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity.
基金the financial support provided by project of Science and Technology Tackling Key Problems in Henan Province(Grant No.182102110430)the National Key Research and Development Program of China(Grant No.2016YFD0101300)by China Agricultural Research system(CARS-12).
文摘In the last decade,some disease occurred on our experimental farms that had caused serious losses.They were not caused by fungi,bacteria or viruses.By loop-mediated isothermal amplification(LAMP)technique,the detection results pointed to the possible pathogen as phytoplasma.The investigation results implied that phytoplasmas could cause more than 13 kinds of symptoms in almost all parts of plants in B.napus L.,including witches’broom,multi-stems,aggregate main inflorescences,and flat stems.The incidences of these phytoplasma-associated diseases in our experimental farms rose from 1.61%in 2010 to 6.00%in 2021.Some phytoplasma infected plants died without any growing points.These studies would be helpful for detecting phytoplasmas diseases,selecting disease resistant germplasm and improving varieties with disease resistances in B.napus L.