To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then perfo...To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then performed grey relation analysis and cluster analysis on 12 traits including the yield and quality of young stem,seed yield, and several agronomic traits after harvesting of young stem. The results showed that A11, A7, and A4 had higher main stalk yield than other combinations.The young stem/leaf ratios of A11, A5, A7, A4, A3, and A1 were in line with the quality requirements for young stem commodity. The soluble sugar content of A2,A8, and A10 was higher than that of CK(Fengyou 737), and the seed yields of A4,A3, A2, A1, A5, and A6 were higher than that of CK. The 11 rapeseed combinations were classified into 3 grades by grey relation analysis and cluster analysis. Two combinations, A4(Y20A×95C4R) and A11(3194A×09-5R), showed the weighted relation degrees higher than 0.95, which were clustered into grade I by cluster analysis. They had good agronomic traits and good performance as both oilseed and vegetable. A8, A5, A3, A7, A2, A10, A6, and A1 were clustered into grade Ⅱ and A9 into grade Ⅲ. In this study, the oilseed and vegetable dual-purpose rapeseed combinations were screened out based on grey relation analysis and cluster analysis,which can provide reference for the breeding of oilseed and vegetable dual-purpose rapeseed combinations.展开更多
financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile lin...financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line);the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315);supported by Emmy Noether DFG grant MA 6473/1-1展开更多
Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known a...Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.展开更多
文摘To screen out the rapeseed(Brassica napus) combinations that are suitable for the production of both oilseed and vegetable, we carried out a field experiment for 11 new combinations(hybrids) of rapeseed and then performed grey relation analysis and cluster analysis on 12 traits including the yield and quality of young stem,seed yield, and several agronomic traits after harvesting of young stem. The results showed that A11, A7, and A4 had higher main stalk yield than other combinations.The young stem/leaf ratios of A11, A5, A7, A4, A3, and A1 were in line with the quality requirements for young stem commodity. The soluble sugar content of A2,A8, and A10 was higher than that of CK(Fengyou 737), and the seed yields of A4,A3, A2, A1, A5, and A6 were higher than that of CK. The 11 rapeseed combinations were classified into 3 grades by grey relation analysis and cluster analysis. Two combinations, A4(Y20A×95C4R) and A11(3194A×09-5R), showed the weighted relation degrees higher than 0.95, which were clustered into grade I by cluster analysis. They had good agronomic traits and good performance as both oilseed and vegetable. A8, A5, A3, A7, A2, A10, A6, and A1 were clustered into grade Ⅱ and A9 into grade Ⅲ. In this study, the oilseed and vegetable dual-purpose rapeseed combinations were screened out based on grey relation analysis and cluster analysis,which can provide reference for the breeding of oilseed and vegetable dual-purpose rapeseed combinations.
基金financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010)the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line)+1 种基金the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315)supported by Emmy Noether DFG grant MA 6473/1-1
文摘financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line);the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315);supported by Emmy Noether DFG grant MA 6473/1-1
基金supported by the Key Research and Development project of Hubei Province (Grant Nos. 2020BBB083, 2021BBA097 and 2021BBA102)the National Key Research and Development Program of China (Grant No. 2016YFD0100202)。
文摘Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.