期刊文献+
共找到260,687篇文章
< 1 2 250 >
每页显示 20 50 100
On-site rapid detection of multiple pesticide residues in tea leaves by lateral flow immunoassay
1
作者 Junxia Gao Tianyi Zhang +7 位作者 Yihua Fang Ying Zhao Mei Yang Li Zhao Ye Li Jun Huang Guonian Zhu Yirong Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第2期276-283,共8页
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe... The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release. 展开更多
关键词 Lateral flow immunoassay rapid detection Pesticide multi-residue Tea matrix Sample rapid pretreatment
下载PDF
Rapid Detection of Somatic Cell Count Based on Hybrid Variable Selection Method
2
作者 Shen Weizheng Cui Xiang +6 位作者 Wang Yan Nie Debao Zhang Qinggang Zheng Wei Sun Jian Yang Xin Dai Baisheng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第3期59-73,共15页
Somatic cell count detection is the daily work of dairy farms to monitor the health of cows.The feasibility of applying near-infrared spectroscopy to somatic cell count detection was researched in this paper.Milk samp... Somatic cell count detection is the daily work of dairy farms to monitor the health of cows.The feasibility of applying near-infrared spectroscopy to somatic cell count detection was researched in this paper.Milk samples with different somatic cell counts were collected and preprocessing methods were studied.Variable selection algorithm based on hybrid strategy and modelling method based on ensemble learning were explored for somatic cell count detection.Detection model was used to diagnose subclinical mastitis and the results showed that near-infrared spectroscopy could be a tool to realize rapid detection of somatic cell count in milk. 展开更多
关键词 near-infrared spectroscopy somatic cell count MASTITIS rapid detection
下载PDF
Establishment of High-sensitivity Rapid Fluorescence Quantitative Detection Method for Antibody against Peste des Petits Ruminants Virus
3
作者 Zhao LIU Bo LIU +3 位作者 Zhida LIN Hang SUN Yu SUN Xiaohui SONG 《Agricultural Biotechnology》 2024年第5期22-27,共6页
[Objectives]This study was conducted to establish a rapid quantitative method for detecting antibody against Peste des Petits Ruminants Virus(PPR V)in sheep serum.[Methods]Soluble N protein and NH fusion protein were ... [Objectives]This study was conducted to establish a rapid quantitative method for detecting antibody against Peste des Petits Ruminants Virus(PPR V)in sheep serum.[Methods]Soluble N protein and NH fusion protein were obtained in Escherichia coli prokaryotic expression system by optimizing codons and expression conditions of E.coli.Furthermore,based on the purified soluble N protein and NH fusion protein,a high-sensitivity fluorescence immunoassay kit for detecting the antibody against PPR V was established.[Results]The method could quickly and quantitatively detect PPR V antibody in sheep serum,with high sensitivity and specificity,without any cross reaction to other related sheep pathogens.The intra-batch and inter-batch coefficients of variation were less than 10%and 15%,respectively,and the method had good repeatability.Through detection on 292 clinical serum samples,it was compared with the French IDVET competitive ELISA kit,and the coincidence rate of the two methods reached 93.84%.Compared with the serum neutralization test,the detected titer value of the high-sensitivity rapid fluorescence quantitative detection method was basically consistent with the tilter value obtained by the neutralization test on the standard positive serum(provided by the WOAH Brucellosis Reference Laboratory of France).[Conclusions]This method can realize rapid quantitative detection of PPR V antibody on site,and has high practical value and popularization value. 展开更多
关键词 Peste des Petits Ruminants N protein NH fusion protein Soluble expression and purification rapid quantitative detection
下载PDF
A Rapid Crack Detection Technique Based on Attention for Intelligent M&O of Cross-Sea Bridge
4
作者 ZHOU Yong-chuan LI Guang-jun +2 位作者 WEI Wei WANG Ya-meng JING Qiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期866-876,共11页
Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection ac... Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge. 展开更多
关键词 bridge defect detection crack detection lightweight design
下载PDF
Evaluation of a Rapid Diagnostic Test, Boson Biotech SARS CoV-2 Ag, for the Detection of SARS-CoV-2 in Gabon
5
作者 Samira Zoa Assoumou Ulrich Leger Davy Mouangala +6 位作者 Ludovic Mewono Davy-Christ Angoune Ndong Guy Paterne Malonga Mbembo Nely Meungang Alain Moutsinga Elvyre Anita Mbongo Kama Rodrigue Mintsa Nguema 《Advances in Infectious Diseases》 CAS 2024年第2期469-477,共9页
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is... 1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission. 展开更多
关键词 SARS-CoV-2 rapid Diagnostic Test EVALUATION COVID-19 ANTIGEN Performance
下载PDF
Development of RPA-Cas12a-fluorescence assay for rapid and reliable detection of human bocavirus 1
6
作者 Weidong Qian Xuefei Wang +4 位作者 Ting Wang Jie Huang Qian Zhang Yongdong Li Si Chen 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第2期179-188,共10页
Human bocavirus(HBoV)1 is considered an important pathogen that mainly affects infants aged 6–24 months,but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of ... Human bocavirus(HBoV)1 is considered an important pathogen that mainly affects infants aged 6–24 months,but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of individuals with early infection of HBoV1 remains somewhat challenging.Herein,we present a novel faster,lower cost,reliable method for the detection of HBoV1,which integrates a recombinase polymerase amplification(RPA)assay with the CRISPR/Cas12a system,designated the RPA-Cas12a-fluorescence assay.The RPA-Cas12a-fluorescence system can specifically detect target gene levels as low as 0.5 copies of HBoV1 plasmid DNA per microliter within 40 min at 37℃without the need for sophisticated instruments.The method also demonstrates excellent specificity without cross-reactivity to non-target pathogens.Furthermore,the method was appraised using 28 clinical samples,and displayed high accuracy with positive and negative predictive agreement of 90.9%and 100%,respectively.Therefore,our proposed rapid and sensitive HBoV1 detection method,the RPA-Cas12a-fluorescence assay,shows promising potential for early on-site diagnosis of HBoV1 infection in the fields of public health and health care.The established RPA-Cas12a-fluorescence assay is rapid and reliable method for human bocavirus 1 detection.The RPA-Cas12a-fluorescence assay can be completed within 40 min with robust specificity and sensitivity of 0.5 copies/μl. 展开更多
关键词 CRISPR-Cas12a detection human bocavirus 1 on-site diagnosis recombinase polymerase amplification
下载PDF
A LFD-RAA-Based Rapid Detection Method for Pseudomonas syringae pv. tabaci
7
作者 XIAO Yan-song LI Hong-guang +5 位作者 LI Si-jun WU Wen-xin ZHOU Lu-su ZHONG Jie SU Jia-en YANG Zhi-juan 《Agricultural Science & Technology》 CAS 2024年第2期38-43,共6页
This study aimed to achieve rapid detection of Pseudomonas syringae pv.tabaci,the pathogen of tobacco wildfire disease.The specific primers and probes for recombinase-aided amplification(RAA)were designed with HrpZ as... This study aimed to achieve rapid detection of Pseudomonas syringae pv.tabaci,the pathogen of tobacco wildfire disease.The specific primers and probes for recombinase-aided amplification(RAA)were designed with HrpZ as the target gene.RAA was then combined with the lateral flow dipstick(LFD)to establish a LFD-RAA-based rapid detection system for the pathogen.Furthermore,the detection performance of the established method was tested.The results showed that the LFDRAA method had high specificity.The amplification could be completed after 25 min of reaction at 39℃.The sensitivity of the established method reached 0.0001 ng/μL,which was superior to that of PCR detection.Moreover,the LFD-RAA method could quickly detect P.syringae pv.tabaci from tobacco leaves,demonstrating field applicability.To sum up,the LFD-RAA method established in this study can be applied in the rapid detection and early diagnosis of tobacco wildfire disease. 展开更多
关键词 Tobacco wildfire disease Recombinase-aided amplification detection
下载PDF
基于改进Detection Transformer的棉花幼苗与杂草检测模型研究
8
作者 冯向萍 杜晨 +3 位作者 李永可 张世豪 舒芹 赵昀杰 《计算机与数字工程》 2024年第7期2176-2182,共7页
基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transforme... 基于深度学习的目标检测技术在棉花幼苗与杂草检测领域已取得一定进展。论文提出了基于改进Detection Transformer的棉花幼苗与杂草检测模型,以提高杂草目标检测的准确率和效率。首先,引入了可变形注意力模块替代原始模型中的Transformer注意力模块,提高模型对特征图目标形变的处理能力。提出新的降噪训练机制,解决了二分图匹配不稳定问题。提出混合查询选择策略,提高解码器对目标类别和位置信息的利用效率。使用Swin Transformer作为网络主干,提高模型特征提取能力。通过对比原网络,论文提出的模型方法在训练过程中表现出更快的收敛速度,并且在准确率方面提高了6.7%。 展开更多
关键词 目标检测 detection Transformer 棉花幼苗 杂草检测
下载PDF
A Hybrid Intrusion Detection Method Based on Convolutional Neural Network and AdaBoost 被引量:1
9
作者 Wu Zhijun Li Yuqi Yue Meng 《China Communications》 SCIE CSCD 2024年第11期180-189,共10页
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection... To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data. 展开更多
关键词 ADABOOST CNN detection rate false positive rate feature extraction intrusion detection
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
10
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model 被引量:1
11
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
Esophageal cancer screening,early detection and treatment:Current insights and future directions 被引量:3
12
作者 Hong-Tao Qu Qing Li +7 位作者 Liang Hao Yan-Jing Ni Wen-Yu Luan Zhe Yang Xiao-Dong Chen Tong-Tong Zhang Yan-Dong Miao Fang Zhang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1180-1191,共12页
Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately ... Esophageal cancer ranks among the most prevalent malignant tumors globally,primarily due to its highly aggressive nature and poor survival rates.According to the 2020 global cancer statistics,there were approximately 604000 new cases of esophageal cancer,resulting in 544000 deaths.The 5-year survival rate hovers around a mere 15%-25%.Notably,distinct variations exist in the risk factors associated with the two primary histological types,influencing their worldwide incidence and distribution.Squamous cell carcinoma displays a high incidence in specific regions,such as certain areas in China,where it meets the cost-effect-iveness criteria for widespread endoscopy-based early diagnosis within the local population.Conversely,adenocarcinoma(EAC)represents the most common histological subtype of esophageal cancer in Europe and the United States.The role of early diagnosis in cases of EAC originating from Barrett's esophagus(BE)remains a subject of controversy.The effectiveness of early detection for EAC,particularly those arising from BE,continues to be a debated topic.The variations in how early-stage esophageal carcinoma is treated in different regions are largely due to the differing rates of early-stage cancer diagnoses.In areas with higher incidences,such as China and Japan,early diagnosis is more common,which has led to the advancement of endoscopic methods as definitive treatments.These techniques have demonstrated remarkable efficacy with minimal complications while preserving esophageal functionality.Early screening,prompt diagnosis,and timely treatment are key strategies that can significantly lower both the occurrence and death rates associated with esophageal cancer. 展开更多
关键词 Esophageal cancer SCREENING Early detection Treatment Endoscopic mucosal resection Endoscopic submucosal dissection
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks 被引量:1
13
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 Feature extraction Machine learning Network intrusion detection system IOT
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
14
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
15
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
16
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
17
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
18
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection 被引量:1
19
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 Time series anomaly detection unsupervised feature learning feature fusion
下载PDF
An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7 被引量:1
20
作者 Liqiu Ren Zhanying Li +2 位作者 Xueyu He Lingyan Kong Yinghao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2829-2845,共17页
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic... For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection. 展开更多
关键词 Deep learning underwater object detection improved YOLOv7 attention mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部