The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combinat...The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.展开更多
A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment c...A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research, design, assembly, and wax injection operation of the wax tool took 10 days. Considering the fact that wax melting temperature is as low as 70℃ and injection pressure of 0.5 MPa, the tool suffers no damage due to the thermal and pressure stresses, leading to the mass production of wax models.展开更多
This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conv...This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling.A case study of Encloser part is investigated for cycle time reduction and quality improvement.The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight(AMI)2016.The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling.展开更多
Layer manufacture technologies are gaining increasing attention in the manufacturing for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produc...Layer manufacture technologies are gaining increasing attention in the manufacturing for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered as an effective way of producing rapid tooling. Mechanical properties and accuracy are critical for tooling. This paper reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production tooling for polymer manufacture. A comparison between indirectly selective laser sintering and directly selective laser sintering to provide the tooling was reported. Three main areas were addressed during the study: mechanical strength, accuracy, and build rate. Overviews of the results from the studies were presented.展开更多
Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surfac...Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surface area and CCC with constantvolume in injection molding using Mold-flow Insight 2016 software. Also the CCC resultswere compared with conventional cooling channels. Four different shapes of the CCC suchas circular, elliptical, rectangular and semi-circular were proposed. The locations of thecooling channels were also kept constant. The results in terms of cooling time, cycle timereduction and improvement in quality of the product shows that no significant effect ofCCC’s shapes when surface area of CCC kept constant. On the other hand, the rectangularCCC shows better result as compared to other shapes of CCC when volume of CCC werekept constant.展开更多
The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an ...The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an entity by first forming a series of layers according to the dispersed section information of the digital model, and then piling the formed layers sequentially together. It is capable of forming parts with complicated structures and non-homogeneous materials. Traditional RPM techniques are mainly used as prototypes in product invention process, such as stereolithography, three-dimensional printing, laminated object manufacturing, and fused deposition modeling. Later, with the progress of material and enabling technology, many new RPM techniques emerged out and have been already applied in the fields such as rapid tooling/moulding, direct formed usable part, nano-/micro-RPM, and biomanufacturing. This high flexible digital manufacturing method has a likely ability to become an almighty forming technology.展开更多
Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our ce...Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our center has done a series of pojects covering RP theory (modern shaping science), new RP processes and equipment,rapid tooling technology and rapid product development systems. With the STEP protocol and product modeling technology, RP&M technology can be integrated into CIMS to form a new subsystem, the free form manufacturing subsystem. The subsystem architecture is investigated in this paper.展开更多
Based on a large amount of literature about tool wear research,873 tool wear curves are taken as samples,and statistical analysis is carried out to select the most suitable tool from all the tool materials suggested b...Based on a large amount of literature about tool wear research,873 tool wear curves are taken as samples,and statistical analysis is carried out to select the most suitable tool from all the tool materials suggested by the tool manufacturers. Statistical relationships between the initial wear and uniform wear periods are obtained. The results show that there is qualitative relationship between wear rate during initial wear period (WRIWP) and wear rate in uniform wear period (WRUWP) to certain extent. On this basis,a tool material rapid selection method based on the initial wear is put forward,and suitable tool materials for machining titanium alloy are selected. The experimental results indicate that this method is effective and useful. The new tool materials rapid selection can be used to select suitable cutting tool materials quickly before carrying out systematic machinability tests with the most suitable tool materials. The technology can be applied to doing the initial selection of cutting tool materials in either the machinability research or the workshop production.展开更多
An automated environment is presented which aids the software engineers in developing data pro- cessing systems by using rapid prototyping techniques.The environment is being developed on VAX sta- tion.It can render g...An automated environment is presented which aids the software engineers in developing data pro- cessing systems by using rapid prototyping techniques.The environment is being developed on VAX sta- tion.It can render good support to the specification of the requirements and the rapid creation of proto- type.The goal,the methodology,the general structure of the environment and two sub-systems are discussed.展开更多
Additive manufacturing(AM)is widely used in the automotive industry and has been expanded to include aerospace,marine,and rail.High flexibility and the possibility of manufacturing complex parts in AM motivate the int...Additive manufacturing(AM)is widely used in the automotive industry and has been expanded to include aerospace,marine,and rail.High flexibility and the possibility of manufacturing complex parts in AM motivate the integration of additive manu-facturing with classical forming technologies,which can improve tooling concepts and reduce costs.This study presents three applications of this integration.First,the possibility of successful utilization of selective laser melting for manufacturing extrusion tools with complex cooling channels and paths for thermocouples is reported,leading to significantly reduced inner die temperatures during the extrusion process.Second,sheet lamination is integrated with laser metal deposition(LMD)to manufacture deep-drawing dies.Promising results are achieved in reducing the stair step effect,which is the main challenge in sheet lamination,by LMD and following post-processing such as milling,ball burnishing,and laser polishing.The new manufacturing route shows that LMD can economically and efficiently reduce the stair step effect and omit the hardening step from the conventional manufacturing process route.Finally,LMD is used to manufacture a hot stamping punch with improved surface roughness by ball burnishing and near-surface complex cooling channels.The experimental results show that the manufactured punch has lower temperatures during hot stamping compared with the conventionally manufactured punch.This study shows the successful integration of AM processes with classical forming processes.展开更多
In accordance with the requirement of manufacturing dies quickly and economically,a hybrid forming method of stamping dies for automobile panels is proposed.The method combines digital patternless casting and high-pow...In accordance with the requirement of manufacturing dies quickly and economically,a hybrid forming method of stamping dies for automobile panels is proposed.The method combines digital patternless casting and high-power laser cladding.An experimental study is conducted on the hybrid forming process and its trial production and application in the manufacturing of stamping dies for typical panels.Results prove that the laser cladding layer exceeds HRC60(Rockwell hardness)and thus meets the production efficiency requirement of automobile dies.The rate of defects is well controlled.Compared with traditional technology,this technology has remarkable advantages and advancement.展开更多
文摘The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.
基金the Rapid Prototyping & Tool-ing Branch of SAPCO Part Supplier of Car Manufacturing Co. of Iran-Khodro and POULADIR Investment Casting Company for supporting this project
文摘A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research, design, assembly, and wax injection operation of the wax tool took 10 days. Considering the fact that wax melting temperature is as low as 70℃ and injection pressure of 0.5 MPa, the tool suffers no damage due to the thermal and pressure stresses, leading to the mass production of wax models.
文摘This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling.A case study of Encloser part is investigated for cycle time reduction and quality improvement.The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight(AMI)2016.The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling.
文摘Layer manufacture technologies are gaining increasing attention in the manufacturing for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered as an effective way of producing rapid tooling. Mechanical properties and accuracy are critical for tooling. This paper reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production tooling for polymer manufacture. A comparison between indirectly selective laser sintering and directly selective laser sintering to provide the tooling was reported. Three main areas were addressed during the study: mechanical strength, accuracy, and build rate. Overviews of the results from the studies were presented.
文摘Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surface area and CCC with constantvolume in injection molding using Mold-flow Insight 2016 software. Also the CCC resultswere compared with conventional cooling channels. Four different shapes of the CCC suchas circular, elliptical, rectangular and semi-circular were proposed. The locations of thecooling channels were also kept constant. The results in terms of cooling time, cycle timereduction and improvement in quality of the product shows that no significant effect ofCCC’s shapes when surface area of CCC kept constant. On the other hand, the rectangularCCC shows better result as compared to other shapes of CCC when volume of CCC werekept constant.
基金Supported by the National Natural Science Foundation of China(No. 50575118)
文摘The rapid prototyping and manufacturing technology (RPM), is an integration of many different disciplines. It is based on an advanced dispersed-accumulated forming principle and originated from 1980s. It generates an entity by first forming a series of layers according to the dispersed section information of the digital model, and then piling the formed layers sequentially together. It is capable of forming parts with complicated structures and non-homogeneous materials. Traditional RPM techniques are mainly used as prototypes in product invention process, such as stereolithography, three-dimensional printing, laminated object manufacturing, and fused deposition modeling. Later, with the progress of material and enabling technology, many new RPM techniques emerged out and have been already applied in the fields such as rapid tooling/moulding, direct formed usable part, nano-/micro-RPM, and biomanufacturing. This high flexible digital manufacturing method has a likely ability to become an almighty forming technology.
文摘Recent developments of rapid prototyping and manufaturing (RP&M)technology are discussed. To facilitate application of RP&M technology as an enabling technology in product development and manufacturing, our center has done a series of pojects covering RP theory (modern shaping science), new RP processes and equipment,rapid tooling technology and rapid product development systems. With the STEP protocol and product modeling technology, RP&M technology can be integrated into CIMS to form a new subsystem, the free form manufacturing subsystem. The subsystem architecture is investigated in this paper.
文摘Based on a large amount of literature about tool wear research,873 tool wear curves are taken as samples,and statistical analysis is carried out to select the most suitable tool from all the tool materials suggested by the tool manufacturers. Statistical relationships between the initial wear and uniform wear periods are obtained. The results show that there is qualitative relationship between wear rate during initial wear period (WRIWP) and wear rate in uniform wear period (WRUWP) to certain extent. On this basis,a tool material rapid selection method based on the initial wear is put forward,and suitable tool materials for machining titanium alloy are selected. The experimental results indicate that this method is effective and useful. The new tool materials rapid selection can be used to select suitable cutting tool materials quickly before carrying out systematic machinability tests with the most suitable tool materials. The technology can be applied to doing the initial selection of cutting tool materials in either the machinability research or the workshop production.
文摘An automated environment is presented which aids the software engineers in developing data pro- cessing systems by using rapid prototyping techniques.The environment is being developed on VAX sta- tion.It can render good support to the specification of the requirements and the rapid creation of proto- type.The goal,the methodology,the general structure of the environment and two sub-systems are discussed.
基金was carried out within the projects 198180216,426515407 and 417202720 funded by the German Research Foundation(DFG).
文摘Additive manufacturing(AM)is widely used in the automotive industry and has been expanded to include aerospace,marine,and rail.High flexibility and the possibility of manufacturing complex parts in AM motivate the integration of additive manu-facturing with classical forming technologies,which can improve tooling concepts and reduce costs.This study presents three applications of this integration.First,the possibility of successful utilization of selective laser melting for manufacturing extrusion tools with complex cooling channels and paths for thermocouples is reported,leading to significantly reduced inner die temperatures during the extrusion process.Second,sheet lamination is integrated with laser metal deposition(LMD)to manufacture deep-drawing dies.Promising results are achieved in reducing the stair step effect,which is the main challenge in sheet lamination,by LMD and following post-processing such as milling,ball burnishing,and laser polishing.The new manufacturing route shows that LMD can economically and efficiently reduce the stair step effect and omit the hardening step from the conventional manufacturing process route.Finally,LMD is used to manufacture a hot stamping punch with improved surface roughness by ball burnishing and near-surface complex cooling channels.The experimental results show that the manufactured punch has lower temperatures during hot stamping compared with the conventionally manufactured punch.This study shows the successful integration of AM processes with classical forming processes.
文摘In accordance with the requirement of manufacturing dies quickly and economically,a hybrid forming method of stamping dies for automobile panels is proposed.The method combines digital patternless casting and high-power laser cladding.An experimental study is conducted on the hybrid forming process and its trial production and application in the manufacturing of stamping dies for typical panels.Results prove that the laser cladding layer exceeds HRC60(Rockwell hardness)and thus meets the production efficiency requirement of automobile dies.The rate of defects is well controlled.Compared with traditional technology,this technology has remarkable advantages and advancement.