期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Jurassic Black Shales Facies from Qiangtang Basin (Northern Tibet): Rare Earth and Trace Elements for Paleoceanographic Implications 被引量:4
1
作者 CHEN Lan YI Haisheng +3 位作者 TSAI Louis Loung-Yie XU Guiwen DA Xuejuan LIN Andrew Tien-Shun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第2期540-554,共15页
The Biluo Co and Amdo 114 station, northern Tibet, cropping out the Early Toarcian and Middle-Late Tithonian (Jurassic) organic-rich black shales, have been a focus to petroleum geologists in discussing their oil-pr... The Biluo Co and Amdo 114 station, northern Tibet, cropping out the Early Toarcian and Middle-Late Tithonian (Jurassic) organic-rich black shales, have been a focus to petroleum geologists in discussing their oil-producing potential. This paper first reports the trace elements and rare earth elements to discuss the paleoenvironments, redox conditions and sedimentary mechanisms of those black shales. Both sections exhibit variation in trace element abundances with concentrations 〈0.1 ppm to 760 ppm, mostly enriched in V, Cr, Ni, Cu, Zn, Mo, Ba and U. Element ratios of Ni/Co, V/Cr, U/Th and V/(V+Ni) plus U were used to identify redox conditions. The shale-normalized rare earth element (REE) patterns are characterized by the flat-shale type with instable Ce anomalies and very weekly positive Eu anomalies. Positive Ceanom values are significant with values varying between - 0.064 and 0.029 in Biluo Co, which may be interpreted as release of REE and input of riverine terrestrial matter with rich Ce (resulting in pH change) during the anoxic conditions. In the middle parts of Amdo 114 station, distinct negative Ceanom values are observed (-0.238 to -0.111) and associated surface water warming were interpreted as being related to a major sea level rise. In contrast, the formation of the black shales in the lower and upper part of the studied succession took place during a cooler (Ceanom values 〉-0.10), lower surface water productivity, and lower sea-level stage. Thus, we emphasize the role of different factors that control the formation of local and regional black shales. The most important factors are sea-level fluctuations and increasing productivity. 展开更多
关键词 JURASSIC black shale facies rare earth and trace elements PALEOCEANOGRAPHY northern Tibet
下载PDF
Characteristics of Rare Earth and Trace Element Patterns in Bedded Cherts from the Bottom of the Lower Cambrian in the Northern Tarim Basin, Northwest China and Their Genetic Significance 被引量:1
2
作者 YUBingsong DONGHailiang +2 位作者 CHENJianqiang LIXingwu LINChangsong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第2期215-224,共10页
The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to dec... The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalized (La/Ce) N ratio increases from 1.36 at the bottom to 3.13 at the top. These REE patterns are very similar to those for the cherts deposited in the pelagic ocean-basin floor in the Franciscan Complex exposed at Marin Headlands, California (F-MH chert) (Murray et al., 1991). These geochemical signatures are inconsistent with our previous sedimentological data, which suggests a continental shelf setting. Based on multiple lines of evidence including high TOC content in the concomitant black shales, phosphorite at the bottom of black rock series, regional rise of sea level, and beginning of the southern Tianshan Ocean geotectonic cycle, the authors infer that the hydrothermal fluid was carried to the continental shelf by upwelling from a divergent pelagic ocean floor setting. 展开更多
关键词 black rock series and chert rare earth and trace elements depositional environment northern Tarim Basin Northwest China
下载PDF
MATHEMATICAL STATISTICS OF HEAVY MINERALS AND THEIR REE AND TRACE ELEMENTS IN THE NORTHWESTERN SEA AREA OF ANTARCTIC PENINSULA
3
作者 Wang Xianlan and Zhao YunlongSecond Institute of Oceanography, SOA, Hangzhou 310012 Beijing Institute of Uranium Geology, Beijing 100013 《Chinese Journal of Polar Science》 1990年第1期27-35,共9页
Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe... Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe) elements in the surface sediments in the northwestern sea area of Antarctic Peninsula, the authors find that the heavy minerals as the carriers of REE and trace elements should not be overlooked.Q-mode factor analysis of the heavy minerals provides a 3-factor model of the heavy mineral assemblages in the study area, which is mainly controlled by the origin of materials and sea currents. The common factor P1, composed mainly of pyroxene and metal minerals, and common factor P2, composed of hornblende, epidote and accessory minerals, represent two heavy mineral assemblages which are different from each other in both lithological characters and origin of materials. And common factor P3 probably results from mixing of two end members of the above-mentioned assemblages. R-mode group analysis of the heavy minerals indicates that there are two heavy mineral groups in the sea area, which are different from each other in both genesis and origin of materials. With the help of R-mode analysis, 22 elements are divided into 3 groups and 9 subgroups. These element assemblages show that they are genetically related and that they are different in geochemical behaviors during diagenesis and mineral-forming process. In addition, the relationship between the heavy mineral assemblages and the element subgroups is also discussed. 展开更多
关键词 Sea area of Antarctic Peninsula Marine sediments Heavy minerals rare earth and trace elements Statistic analysis.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部