Here we first report the fully abundant rare earth(RE)-based nanocrystalline multi-component(Ce,La,Y)-Fe-B alloys containing no critical RE elements of Nd,Pr,Dy,and Tb by melt-spinning technique.The roles of La and Y ...Here we first report the fully abundant rare earth(RE)-based nanocrystalline multi-component(Ce,La,Y)-Fe-B alloys containing no critical RE elements of Nd,Pr,Dy,and Tb by melt-spinning technique.The roles of La and Y substitutions for Ce have been fully understood.La plays a positive role on both thermal stability and room-temperature(RT)magnetic properties.The enhanced coercivity H_(cj)by partial substitution of La is attributed to the increases of anisotropy field H_A and the formation of continuously distributed grain boundaries resulting from the suppre s sion of CeFe_(2)phase.Although Y substitution is not benefit for H_(cj),both remanent polarization J_r and thermal stability have been effectively improved since Y_(2)Fe_(14)B shows relatively high saturation magnetization M_s and a positive temperature coefficient of HA over a certain temperature range.In addition,RE element segregation has been confirmed,La prefers to enter into the grain boundaries than Ce and Y prefers to remain in the 2:14:1 phase.Based on these understanding,a series of melt-spun(Ce,La,Y)-Fe-B alloys have been designed.A relatively good combination of magnetic properties with maximum energy product(BH)_(max)=7.4 MGOe,H_(Cj)=400 kA/m,and J_r=0.63 T has been obtained in[(Ce_(0.8)La_(0.2))_(0.7)Y_(0.3)]_(17)Fe_(78)B_6 alloy,together with high Curie temperature(T_c=488 K)and low temperature coefficients of remanence(α=-0.255%/K)and coercivity(β=-0.246%/K).展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51774146 and 52071143).
文摘Here we first report the fully abundant rare earth(RE)-based nanocrystalline multi-component(Ce,La,Y)-Fe-B alloys containing no critical RE elements of Nd,Pr,Dy,and Tb by melt-spinning technique.The roles of La and Y substitutions for Ce have been fully understood.La plays a positive role on both thermal stability and room-temperature(RT)magnetic properties.The enhanced coercivity H_(cj)by partial substitution of La is attributed to the increases of anisotropy field H_A and the formation of continuously distributed grain boundaries resulting from the suppre s sion of CeFe_(2)phase.Although Y substitution is not benefit for H_(cj),both remanent polarization J_r and thermal stability have been effectively improved since Y_(2)Fe_(14)B shows relatively high saturation magnetization M_s and a positive temperature coefficient of HA over a certain temperature range.In addition,RE element segregation has been confirmed,La prefers to enter into the grain boundaries than Ce and Y prefers to remain in the 2:14:1 phase.Based on these understanding,a series of melt-spun(Ce,La,Y)-Fe-B alloys have been designed.A relatively good combination of magnetic properties with maximum energy product(BH)_(max)=7.4 MGOe,H_(Cj)=400 kA/m,and J_r=0.63 T has been obtained in[(Ce_(0.8)La_(0.2))_(0.7)Y_(0.3)]_(17)Fe_(78)B_6 alloy,together with high Curie temperature(T_c=488 K)and low temperature coefficients of remanence(α=-0.255%/K)and coercivity(β=-0.246%/K).