In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toug...In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.展开更多
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment ...In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.展开更多
Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semicond...Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.展开更多
The challenge of growing rare-earth(RE)sesquioxide crystals can be overcome by tailoring their structural stability and melting point via composition engineering.This work contributes to the advancement of the field o...The challenge of growing rare-earth(RE)sesquioxide crystals can be overcome by tailoring their structural stability and melting point via composition engineering.This work contributes to the advancement of the field of crystal growth of high-entropy oxides.A compound with only small REs(Lu,Y,Ho,Yb,Er)_(2)O_(3)maintains a cubic C-type structure upon cooling from the melt,as observed via in-situ high-temperature neutron diffraction on aerodynamically levitated samples.On the other hand,a compound with a mixture of small and large REs(Lu,Y,Ho,Nd,La)_(2)O_(3)crystallizes as a mixture of a primary C-type phase with an unstable secondary phase.Crystals of compositions(Lu,Y,Ho,Nd,La)_(2)O_(3)and(Lu,Y,Gd,Nd,La)_(2)O_(3)were grown by the micro-pulling-down(mPD)method with a single monoclinic B-type phase,while a powder of(Lu,Y,Ho,Yb,Er)_(2)O_(3)did not melt at the maximum operating temperature of an iridium-rhenium crucible.The minimization of the melting point of the two grown crystals is attributed to the mismatch in cation sizes.The electron probe microanalysis reveals that the general element segregation behavior in the crystals depends on the composition.展开更多
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon...Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.展开更多
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here...Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.展开更多
Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural avai...Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural availability, low toxicity, satisfactory capacity, and high operating voltage. In this review, the research status and related interface engineering strategies of Mn-based oxide cathode electrode materials for ZIB in recent years are summarized. Specifically, the review will focus on three types of interface engineering strategies, including interface reconstruction via cathode, interface reconstruction electrolyte, and protection via artificial cathode-electrolyte interphase(CEI) layer, within the context of their evolution of interface layer and corresponding electrochemical performance. A series of experimental variables, such as crystal structure, electrochemical reaction mechanism, and the necessary connection for the formation and evolution of interface layer, will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations. Finally, suggestions and strategies are provided for reasonably designing the cathode-electrolyte interface to realize the excellent performance of Mn-based oxide zinc-based batteries.展开更多
Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap...Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.展开更多
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electroche...Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely...Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.展开更多
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the...Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided.展开更多
The pyrochlore supergroup natural minerals are the oxides for formula A2-xB2O7. In this formula, A typically is Ca, Na, TR, Ba, Fe and Mn cation. B is Ta, Ti, Nb, W, Sb. The pyrochlore supergroup is divided into five ...The pyrochlore supergroup natural minerals are the oxides for formula A2-xB2O7. In this formula, A typically is Ca, Na, TR, Ba, Fe and Mn cation. B is Ta, Ti, Nb, W, Sb. The pyrochlore supergroup is divided into five groups basis of the atomic proportions of the B-site atoms Nb, Ta, Sb, Ti, and W. They are pyrochlore, microlite, roméite, betafite, and elsmoreite, respectively. Some of these minerals containing rare-earth elements species or synthetic oxides have important applications in materials, as for optical materials, light catalyst materials, magnetoelectric materials and radioactive waste treatment etc.展开更多
The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origi...The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.展开更多
基金the High Technology Research and Development Programme of China.
文摘In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
基金supported by the National Natural Science Foundation of China(22078215)Research Project by Shanxi Scholarship Council of China(2021-055)。
文摘In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (No.62074014)the Xiaomi Scholar project。
文摘Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
基金This work was supported by the National Science Foundation(DMR 1846935)。
文摘The challenge of growing rare-earth(RE)sesquioxide crystals can be overcome by tailoring their structural stability and melting point via composition engineering.This work contributes to the advancement of the field of crystal growth of high-entropy oxides.A compound with only small REs(Lu,Y,Ho,Yb,Er)_(2)O_(3)maintains a cubic C-type structure upon cooling from the melt,as observed via in-situ high-temperature neutron diffraction on aerodynamically levitated samples.On the other hand,a compound with a mixture of small and large REs(Lu,Y,Ho,Nd,La)_(2)O_(3)crystallizes as a mixture of a primary C-type phase with an unstable secondary phase.Crystals of compositions(Lu,Y,Ho,Nd,La)_(2)O_(3)and(Lu,Y,Gd,Nd,La)_(2)O_(3)were grown by the micro-pulling-down(mPD)method with a single monoclinic B-type phase,while a powder of(Lu,Y,Ho,Yb,Er)_(2)O_(3)did not melt at the maximum operating temperature of an iridium-rhenium crucible.The minimization of the melting point of the two grown crystals is attributed to the mismatch in cation sizes.The electron probe microanalysis reveals that the general element segregation behavior in the crystals depends on the composition.
基金This study was supported by the National Research Foundation of Korea(NRF-2021R1C1C1010233)funded by the Korean government(MSIT)+1 种基金This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant(No.G032542411)funded by the Korea Ministry of Trade,Industry,and Energy(MOTIE).
文摘Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications.
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
基金the National Key Research and Development Program of China[No.2021YFB4000700]the CAS Project for Young Scientists in Basic Research[YSBR-022]+1 种基金the National Natural Science Foundation of China[22008136,21925803]the Welsh Government funded Taith Research Mobility Programme[No.524339]。
文摘Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.
基金financial support from the National Natural Science Foundation of China (No. 21676036)the Natural Science Foundation of Chongqing (No. CSTB2023NSCQMSX0580)。
文摘Manganese(Mn)-based materials are considered as one of the most promising cathodes in zinc-ion batteries(ZIBs) for large-scale energy storage applications because of their multivalence, cost-effectiveness,natural availability, low toxicity, satisfactory capacity, and high operating voltage. In this review, the research status and related interface engineering strategies of Mn-based oxide cathode electrode materials for ZIB in recent years are summarized. Specifically, the review will focus on three types of interface engineering strategies, including interface reconstruction via cathode, interface reconstruction electrolyte, and protection via artificial cathode-electrolyte interphase(CEI) layer, within the context of their evolution of interface layer and corresponding electrochemical performance. A series of experimental variables, such as crystal structure, electrochemical reaction mechanism, and the necessary connection for the formation and evolution of interface layer, will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations. Finally, suggestions and strategies are provided for reasonably designing the cathode-electrolyte interface to realize the excellent performance of Mn-based oxide zinc-based batteries.
基金The authors acknowledge the support of the Shenyang University of Technology(QNPY202209-4)the National Natural Science Foundation of China(21571132)+1 种基金Jiangsu University Advanced Talent Fund(5501710002)the Education Department of Liaoning Province(JYTQN2023285).
文摘Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.
基金financially supported by the National Natural Science Foundation of China(52202046,51602246,and 51801144)the Natural Science Foundation of Shanxi Provincial(2021JQ-034)。
文摘Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金the financial support from the National Key Research and Development Program of China(2022YFA1207503)the Giga Force Electronics Interdisciplinary Funding(JJHXM002208-2023)。
文摘Exploring suitable high-capacity V_(2)O_(5)-based cathode materials is essential for the rapid advancement of aqueous zinc ion batteries(ZIBs).However,the typical problem of slow Zn^(2+)diffusion kinetics has severely limited the feasibility of such materials.In this work,unique hydrated vanadates(CaVO,BaVO)were obtained by intercalation of Ca^(2+)or Ba^(2+)into hydrated vanadium pentoxide.In the CaVO//Zn and BaVO//Zn batteries systems,the former delivered up to a 489.8 mAh g^(-1)discharge specific capacity at 0.1 A g^(-1).Moreover,the remarkable energy density of 370.07 Wh kg^(-1)and favorable cycling stability yard outperform BaVO,pure V_(2)O_(5),and many reported cathodes of similar ionic intercalation compounds.In addition,pseudocapacitance analysis,galvanostatic intermittent titration(GITT)tests,and Trasatti analysis revealed the high capacitance contribution and Zn^(2+)diffusion coefficient of CaVO,while an in-depth investigation based on EIS elucidated the reasons for the better electrochemical performance of CaVO.Notably,ex-situ XRD,XPS,and TEM tests further demonstrated the Zn^(2+)insertion/extraction and Zn-storage mechanism that occurred during the cycle in the CaVO//Zn battery system.This work provides new insights into the intercalation of similar divalent cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity aqueous ZIBs.
基金supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 6354)partially supported by the AGH University of Krakow under No.16.16.210.476.
文摘Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided.
基金Supported by National Natural Science Foundation of China (Grant No. 41172052)
文摘The pyrochlore supergroup natural minerals are the oxides for formula A2-xB2O7. In this formula, A typically is Ca, Na, TR, Ba, Fe and Mn cation. B is Ta, Ti, Nb, W, Sb. The pyrochlore supergroup is divided into five groups basis of the atomic proportions of the B-site atoms Nb, Ta, Sb, Ti, and W. They are pyrochlore, microlite, roméite, betafite, and elsmoreite, respectively. Some of these minerals containing rare-earth elements species or synthetic oxides have important applications in materials, as for optical materials, light catalyst materials, magnetoelectric materials and radioactive waste treatment etc.
基金financially supported by the National Natural Science Foundation of China(Grant No.52272253)“Lingyan”Research and Development Plan of Zhejiang Province(Grant No.2022C01071)+2 种基金Low Cost Cathode Material(Grant No.TC220H06P)the Natural Science Foundation of Ningbo(Grant No.202003N4030)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2022299)
文摘The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.