期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Effect of Ginsenoside Rbl on Expressive Proteome of Rat Neurons
1
作者 Chunyan ZHANG Qian XU +1 位作者 Chunling ZHAO Chunlai ZHANG 《Agricultural Biotechnology》 CAS 2012年第2期17-19,共3页
[ Objective ] This study aimed to explore the effect of ginsenoside Rbl on expressive proteome of rat neurons by technologies of proteomics, bioinformat- ies and MS peptide fingerprinting. [ Method ] Rat neurons were ... [ Objective ] This study aimed to explore the effect of ginsenoside Rbl on expressive proteome of rat neurons by technologies of proteomics, bioinformat- ies and MS peptide fingerprinting. [ Method ] Rat neurons were cultured conventionally and randomly separated into two groups. The experimental group was trea- ted with 5 μg/rnl Rbl for 20 min, while control group was added with the same amount of medium. After cell lysis, the whole-cell protein was extracted. Two-di- mensional electrophoresis (2-DE) was used to separate the extracts. Differential expression of proteome between the two groups was analyzed by using ImageMaster 2D Platinum v5.0 software and the two protein spots expressed differently were selected for differential identification with MALDI-TOF-MS. [ Result] Based on the matching and comparative analysis of the protein spots, 418 protein spots were detected in experimental group, including 226 protein spots with differently expres- sive levels; according to the mass spectrometry, the two ginsenoside Rbl-related and differentially-expressed protein spots were identified as cytochrome P-450 and phosducin-like protein, and both of them were phosphorylated proteins. [ Conclusion ] This study showed that the functions of those identified proteins were in- volved in signal transduction, suggesting that the effect of ginsenoside Rbl on expressive proteome of rat neurons might be related to the corresponding signal trans- duction networks. 展开更多
关键词 Ginsenoside Rbl rat neurons Expressive proteome BIOINFORMATICS
下载PDF
Inosine inhibits apoptosis and cytochrome C mRNA expression in rat neurons after cerebral ischemia/reperfusion
2
作者 Jinrong Wang1, Mingjun Bi1, Qin Li2 1Department of Neurology, Rongcheng Second People’s Hospital, Rongcheng 264309, Shandong Province, China 2Department of Neurology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第7期589-592,共4页
BACKGROUND: It has been demonstrated that adenosine can induce glial cell to release cytochrome C, enhance expression of apoptotic gene bax, inhibit anti-apoptotic gene bcl-2, and activate caspase-3 to apoptosis; Wher... BACKGROUND: It has been demonstrated that adenosine can induce glial cell to release cytochrome C, enhance expression of apoptotic gene bax, inhibit anti-apoptotic gene bcl-2, and activate caspase-3 to apoptosis; Whereas inosine can inhibit neuronal apoptosis which is similar to bcl-2. OBJECTIVE: To observe the effects of inosine on neuronal apoptosis and expression of cytochrome C mRNA in rats after focal cerebral ischemia/reperfusion, and analyze the pathway of its neuroprotective effect. DESIGN: A randomised controlled animal trial. SETTINGS: Department of Neurology, Rongcheng Second People's Hospital; Department of Neurology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Sixty-eight rats, weighing 230-280 g and clean grade, were used. TdT-mediated dUTP-biotin nick end labeling (TUNEL) and cytochrome C mRNA in situ hybridization kits and DAB staining kit were purchased from Wuhan Boster Biological Co., Ltd.; Inosine injection [200 mg (2 mL) each] from Qingdao First Pharmaceutical Factory. METHODS: The experiment was accomplished in the animal experimental center in Tongji Medical College of Huazhong University of Science and Technology from December 2003 to June 2005. ① Sixty-four rats were made into focal ischemia by middle cerebral artery occlusion (MCAO) with a nylon monofilament suture. The successfully induced rats were assigned to inosine group (n =32) and model group (n =32) at random. Rats in the inosine group were intraperitoneally administrated with inosine in dose of 100 mg/kg preoperatively, twice a day, 7 days in all. The rats in the control group were injected with the same dose of saline solution by the similar way preoperatively. Each group was randomized into ischemia /reperfusion 2, 6, 12, 24 hours, 2, 3, 7 and 14 days subgroups consisted of 4 rats. The other 4 rats were taken as the sham-operated group, the rats were given the same treatment except for not introduced the filament into the external carotid artery stump, and brain tissue was removed at 2 hours of reperfusion. ② In situ hybridization was performed to examine the expression of cytochrome C mRNA while TUNEL staining was made to characterize apoptosis. ③ The t test was used to compare the difference of measurement data. MAIN OUTCOME MEASURES: ① Neuronal apoptosis in the different regions of the ischemic brain tissue; ② Expression of cytochrome C mRNA in the different regions at different time points after MCAO. RESULTS: All the 68 rats were involved in the analysis of results. ① Neuronal apoptosis: A small number of TUNEL-positive cells were detected in the sham-operated brain and non-ischemic brain. The number of apoptotic cells in the ischemic cortex peaked at 24 hours of reperfusion [(72.00±1.98) cells] and that in the striatum peaked at 2 days [(94.75±3.57) cells], then decreased to the level of sham-operated group at 14 days. Inosine could reduce apoptotic cells from 12 hours to 7 days of reperfusion as compared with the model group (t =6.19-26.67, P < 0.01). ② Cytochrome C mRNA expression: There was weak expression of cytochrome C mRNA in both sham-operated brain and contralateral brain. Cytochrome C was detected at 2 hours of reperfusion in ischemic brain [(25.75±3.50), (39.75±2.49) cells], and strongly increased to a peak at 12 hours and 24 hours of reperfusion in cortex and striatum [(122.50±6.69), (119.25±5.12) cells], respectively. Furthermore, inosine could significantly decrease cytochrome C expression in cortex at 12 hours to 14 days of reperfusion after ischemic reperfusion and that in striatum at 12 hours to 3 days (t =8.67-43.26, P < 0.01). CONCLUSION: Inosine can exert a neuroprotective effect by inhibiting apoptosis and cytochrome C mRNA expression. 展开更多
关键词 mRNA Inosine inhibits apoptosis and cytochrome C mRNA expression in rat neurons after cerebral ischemia/reperfusion
下载PDF
LIPUS Enhance Elongation of Neurites in Rat Cortical Neurons through Inhibition of GSK-3β 被引量:2
3
作者 CONG REN JIA-MOU LI XIN LIN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2010年第3期244-249,共6页
Objective Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and to alter protein production in various kinds of cells. In the present study, we measured the neurites length after LIP... Objective Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and to alter protein production in various kinds of cells. In the present study, we measured the neurites length after LIPUS treatment to define the effectiveness of LIPUS stimulation on neurons, and then we examined the acticity of GSK-3β to study the intracellular mechanism of neurite's outgrowth. Methods LIPUS was applied to cultured primary rat cortical neurons for 5 minutes every day with spatial- and temporal average intensities (SATA) of 10 mW/cm^2, a pulse width of 200 microseconds, a repetition rate of 1.5 KHz, and an operation frequency of 1 MHz. Neurons were photographed on the third day after LIPUS treatment and harvested at third, seventh, and tenth days for immnoblot and semi-quantitative RT-PCR analysis. Results Morphology change showed that neurite extension was enhanced by LIPUS. There was also a remarkable decrease of proteins, including p-Akt, p-GSK-3β, and p-CRMP-2, observed on the seventh and tenth days, and of GSK-3β mRNA expression, observed on the seventh day, in neurons treated with LIPUS. Conclusion LIPUS can enhance elongation of neurites and it is possible through the decreased expression of GSK-3β. 展开更多
关键词 LIPUS rat cortical neurons GSK-3Β
下载PDF
Lead Can Inhibit NMDA-,K^+-,QA/KA-Induced Increases in Intracellular Free Ca^(2+) in Cultured Rat Hippocampal Neurons 被引量:2
4
作者 ZHANGHENG-SHAN SONGLI-HUA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2002年第4期330-340,共11页
Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+],) in cultured fetal rat hippocampal n... Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+],) in cultured fetal rat hippocampal neurons in order to explain the cognitive and learning deficits produced by this heavy metal. Methods Laser scanning confocal microscopy was used. Results The results clearly demonstrated that adding Pb2+ before or after NMDA/glycine stimulation selectively inhibited the stimulated increases in [Ca2+], in a concentration-dependent manner. In contrast, Pb2+ treatment did not markedly affect increases in [Ca2+], induced by an admixture of QA and KA. The minimal inhibitory effect of Pb2+ occurred at 1 μmol/L, and more than seventy percent abolition of the NMDA-stimulated increase in [Ca2+]; was observed at 100 Jμmoll/L Pb2+. Evaluation of Pb2+-induced increase in [Ca2+], response to elevating extracellular concentrations of NMDA, glycine or calcium revealed that Pb2+ was a noncompetitive antagonist of both NMDA and glycine, and a competitive antagonist of Ca2+ at NMDA receptor channels. In addition. Pb2+ inhibited depolarization-evoked increases in [Ca2+], mediated by K+ stimulation(30μmol/L). indicating that Pb2+ also depressed the voltage-dependent calcium channels. Also, the results showed that Pb2+ appeared to be able to elevate the resting levels of [Ca2+|, in cultured neurons, implying a reason for Pb2+-enhanced spontaneous release of several neurotransmitters reported in several previous studies. Conclusion Lead can inhibit NMDA-. K+-, QA/KA-jnduced increases in intracellular [Ca2+], in cultured hippocampal neurons. 展开更多
关键词 Lead poisoning Glutamate receptor: rat hippocampal neuron Calcium Learning deficit Laser scanning confocal microscopy
下载PDF
Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats 被引量:8
5
作者 Sheng-min Lai Zi-ting Gu +4 位作者 Meng-meng Zhao Xi-xia Li Yu-xin Ma Li Luo Jing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1648-1654,共7页
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity o... Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy.Sprague-Dawley rats were mated with male rats at a 1:1 ratio.Rats were administered 0,5,10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21.The gait scores were examined in pregnant rats in each group to analyze maternal toxicity.Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies.Nissl staining was used to observe histological change in the hippocampus.Immunohistochemistry was conducted to observe the condition of neurites,including dendrites and axons.Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein,growth associated protein 43,and the presynaptic vesicle membrane specific protein,synaptophysin.The gait scores of gravid rats significantly increased,suggesting that acrylamide induced maternal motor dysfunction.The number of neurons,as well as expression of growth associated protein 43 and synaptophysin,was reduced with increasing acrylamide dose in postnatal day 21 weaning rats.These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats. 展开更多
关键词 nerve regeneration acrylamide hippocampus neurons developmental toxicity growth associated protein 43 synaptophysin weaning rats dentate gyrus protein developmental neurobiology neural regeneration
下载PDF
Expression of c-Fos protein and nitricoxide synthase in neurons of cerebral cortex from fetal rats in hypoxia and protective role of Angelica sinensis 被引量:1
6
作者 Hong Yu Hongxian Zhao Yuling Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期74-77,共4页
BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to ... BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to study the neurons of hypoxic fetal rats in uterus. OBJECTIVE: To study the effect of hypoxia in uterus on the expression of c-Fos protein and NOS in neurons of cerebral cortex from fetal rats and whether Angelica sinensis has the protective effect on these neurons in hypoxia. DESIGN: Randomized control experiment.SETTING : Department of Histology and Embryology, Luzhou Medical College.MATERIALS : Twelve adult female Wistar rats in oestrum and 1 male Wistar rat with bodymass from 220 to 250 g were chosen. Parenteral solution of Angelica sinensis mainly contained angelica sinensis, 10 mL/ampoule, was provided by Department of Agent of the Second Hospital Affiliated to Hubei Medical University (batch number: 01062310). METHODS : This experiment was completed in the Department of Histology and Embryology of Luzhou Medical College from September 2003 to June 2004. ①Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. Vaginal embolus was performed on conceive female rat at 8: 00 am next day. On the 15^th conceiving day, all conceiving rats were divided randomly into three groups: control group, hypoxia group and Angelica group with 4 in each group. Rats in hypoxia group and Angelica group were modeled with hypotonic hypoxia in uterus. Angelica group: Rats were injected with 8 mL/kg Angelica sinensis injection through caudal veins before hypoxia. Hypoxia group: Rats were injected with the same volume of saline. Control group: Rats were not modeled and fed with normal way. ② Twenty embryos of rats were chosen randomly from each group and then routinely embedded in paraffin. Paraffin sections were cut from the brain of embryos to anterior fontanelle. Double-label staining was used to detect the expression of nNOS and c-Fos in neurons of cerebral cortex from embryos of rats. OLYMPUS Bx-50 microscope was used to observe sections and DP12 digit camera was also used under 400 times to detect types of cells. Under microscope, the number of c-Fos, NOS, c-Fos/NOS positive neurons in cerebral cortex from embryos of rats were counted in 2 fields with magnification of 400 in one section per animal. ③ The data in experiments were analyzed by one-way analysis of variance (ANOVA) followed by q test. MAIN OUTCOME MEASURES: ① Results of immunohistochemical double-label staining of c-Fos/NOS from cerebral cortex; ② Comparison of amount immunohistochemical double-label staining of c-Fos/NOS positive cells from cerebral cortex. RESULTS:① The positive NOS cells and c-Fos/NOS cells in the three groups were mainly distributed in cerebral cortex, but positive c-Fos neurons were not observed. ② Positive NOS cells and c-Fos/NOS cells in hypoxia group were more than those in control group (76.55±12.02, 50.45±10.39; 33.35±7.42, 26.35±6.67, P 〈 0.05), but those in Angelica group were less than those in hypoxia group (51.70±9.82, 35.65±8.37, P 〈 0.05). CONCLUSION: Hypoxia can stimulate the increase of expression of c-Fos protein and NOS in neurons of cerebral cortex. However, Angelica sinensis can decrease this expression so as to play a protective role in cerebral neurons of hypoxic fetal rats. 展开更多
关键词 FOS Expression of c-Fos protein and nitricoxide synthase in neurons of cerebral cortex from fetal rats in hypoxia and protective role of Angelica sinensis
下载PDF
Influence of interferon-gamma on the differentiation of cholinergic neurons in rat embryonic basal forebrain and septal nuclei
7
作者 Yanhong Luo Lin An 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期213-216,共4页
BACKGROUND: Interferon-gamma (IFN-γ) can make neurons in basal forebrain and septal nuclei differentiate into cholinergic neurons by treating the cells in cerebral cortex of newborn rats, without the inhibition fr... BACKGROUND: Interferon-gamma (IFN-γ) can make neurons in basal forebrain and septal nuclei differentiate into cholinergic neurons by treating the cells in cerebral cortex of newborn rats, without the inhibition from IFN-γ antibody. The important effect of IFN-γ on the development and differentiation of neurons has been found by some scholars. OBJ EClIVE:To investigate whether IFN-γ has differentiational effect on cholinergic neurons in basal forebrain and septal nuclei, and make clear that the increased number of cholinergic neurons is resulted by cell differentiation or cell proliferation. DESIGN : Controlled observation trial SETTING: Department of Cell Biology, Medical School, Beijing University MATERIALS: Sixty-eight female Wistar rats at embryonic 16 days, weighing 250 to 350 g, were enrolled in this study, and they were provided by the Experimental Animal Center, Medical School, Beijing University. IFN-γ was the product of Gibco Company. METHODS: This study was carried out in the Department of Cell Biology, Medical School, Beijing University and Daheng Image Company of Chinese Academy of Sciences during September 1995 to December 2002. The female Wistar rats at embryonic 16 days were sacrificed, and their fetuses were taken out. Primary culture of the isolated basal forebrain and septal nuclei was performed. The cultured nerve cells were assigned into 3 groups: control group (nothing added), IFN-γ group(1×10^5 U/L interferon), IFN-γ+ IFN-γ antibody group (1 ×10^5 U/L IFN-γ + IFN-γ antibody). The specific marker enzyme (choline acetyl transferase) of cholinergic neuron was stained with immunohistochemical method. Choline acetyl transferase positive cells were counted, and ^14C-acetyl CoA was used as substrate to detect the activity of choline acetyl transferase, so as to reflect the differentiational effect of IFN-γ on cholinergic neuron in basal forebrain and septal nuclei. Flow cytometry was used to analyze cell circle and detect the proliferation of nerve cells. Nerve cells were marked with MAP2 and counted to evaluate the neuronal proliferation in basal forebrain and septal nuclei. MAIN OUTCOME MEASURES: Effect of interferon-γ on the number and activity of choline acetyl transferase-positive ceils in basal forebrain and septal nuclei as well as the effect on neuronal proliferation. RESULTS : ① Nerve cells in the basal forebrain and septal nuclei of IFN-γ group grew well compared with control group.②The differentiation of cholinergic neurons: The number and activity of choline acetyl transferase positive cells in IFN-γ group were significantly higher than those in the control group [(49.30 ±4.92) /100 cells vs (7.50±1.58) /100 cells; (2 049.00±12.30) min^-1 vs (1 227.30±12.59) min^-1, p 〈 0.01], while there was no significant difference in the number and activity of choline acetyl transferase positive cells between IFN-γ + IFN-γ antibody group and control group(P 〉 0.05). ③The proliferation of cholinergic neurons: Cell percentage was 17.2% and 19.8% at S-stage, 6.2% and 6.1% at G2+M stage in the control group and IFN-γ group respectively, without significant difference (P 〉 0.05). CONCLUSION : IFN-γ does not promote the neuronal proliferation in basal forebrain and septal nuclei, and the increased expression of cholinergic neurons is not resulted by the increase in the number of neurons, but its differentiation. 展开更多
关键词 Influence of interferon-gamma on the differentiation of cholinergic neurons in rat embryonic basal forebrain and septal nuclei IFN
下载PDF
Effect of polygonatum polysaccharide on the hypoxia-induced apoptosis and necrosis in in vitro cultured cerebral cortical neurons from neonatal rats
8
作者 Guozhu Hu Jin Zhang +2 位作者 Ning Tang Zhu Wen Rongqing Nie 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期26-31,共6页
BACKGROUND: Cardiocerebrovascular diseases induced cerebral circulation insufficiency and senile vascular dementia can result in ischemic/hypoxic apoptosis of central neurons, which we should pay more attention to an... BACKGROUND: Cardiocerebrovascular diseases induced cerebral circulation insufficiency and senile vascular dementia can result in ischemic/hypoxic apoptosis of central neurons, which we should pay more attention to and prevent and treat as early as possible. Traditional Chinese medicine possesses the unique advantage in this field. Polygonatum, a Chinese herb for invigorating qi, may play a role against the hypoxic apoptosis of brain neurons. OBJECTIVE : To observe the protective effect of polygonatum polysaccharide on hypoxia-induced apoptosis and necrosis in cerebral cortical neurons cultured in vitro. DESIGN: A comparative experiment.SETTING: Laboratory of Cell Biology, Institute of Basic Medical Sciences, Jiangxi Provincial Academy of Traditional Chinese Medicine. MATERIALS: The experiment was carried out in the Laboratory of Cell Biology, Institute of Basic Medical Sciences, Jiangxi Provincial Academy of Traditional Chinese Medicine from November 2003 to April 2005. Totally 218 Wistar rats (male or female) of clean degree within 24 hours after birth were purchased from the animal center of Jiangxi Medical College (certification number was 021-97-03). METHODS:① Preparation of cerebral cortical neurons of rats: The cerebral cortical tissues were isolated from the Wistar rats within 24 hours after birth, and prepared to single cell suspension, and the cerebral cortical neurons of neonatal rats were in vitro cultured in serum free medium with Neurobasal plus B27 Supplement. ② Observation on the non-toxic dosage of polygonatum polysaccharide on neurons: After the neurons were cultured for 4 days, polygonatum polysaccharide of different dosages (1-20 g/L) was added for continuous culture for 48 hours, the toxicity and non-toxic dosage of polygonatum polysaccharide on neurons were observed and detected with trypan blue staining. ③Grouping: After hypoxia/reoxygenation, the cultured neurons were divided into normal control group, positive apoptotic group and polygonatum polysaccharide group. In the normal control group, the neurons were cultured at 37℃ in CO2 with the volume fraction of 0.05 under saturated humidity for 6 days. In the apoptotic positive group, the neurons were cultured with hypoxia for 12 hours after 4-day culture, and followed by reoxygenation for 48 hours. In the polygonatum polysaccharide group, polygonatum polysaccharide with the terminal concentration of 0.5, 1 and 1.5 g/L was added to some neurons at 10 hours before the hypoxia culture, and then the neurons were cultured with hypoxia for 12 hours, followed by reoxygenation for 48 hours; polygonatum polysaccharide with the terminal concentration of 0.5, 1 and 1.5 g/L was added to the other neurons at 12 hours after hypoxia followed by reoxygenation for 48 hours.④ The Hoechst33342 fluorescence staining, Annexin V/PI flow cytometer, appearance of DNA agarose gel electrophoresis gradient strap and immunohistochemical staining were used to observe the expressions of Bcl-2, Bax and Caspase-3 apoptotic and anti-apoptotic proteins and the ratio of Bcl-2/Bax, and observe the effect of polygonatum polysaccharide against the hypoxic apoptosis of cerebral cortical neurons of neonatal rats. MAIN OUTCOME MEASURES: ① Toxicity and non-toxic dosage of polygonatum polysaccharide on neurons;② Apoptotic rate of neurons detected with Hoechst33342 fluorescence staining;③ Early apoptotic rate and necrotic rate of neurons detected with Annexin V/PI flow cytometer; ④DNA agarose gel electrophoresis ladder-like strap appeared or not;⑤ Expressions of Bcl-2, Bax and Caspase-3 apoptotic and anti-apoptotic proteins and the ratio of Bcl-2/Bax. RESULTS:① Polygonatum polysaccharide within 6 g/L had no cytotoxicity on the normal cultured cerebral cortical neurons (P 〉 0.05). ②The apoptotic rates of neurons detected with Hoechst33342 fluorescence staining had significant differences between the polygonatum polysaccharide groups and positive apoptosis group added to neurons at 10 hours before the hypoxia culture [(13.00±4.52)%,(12.72±2.15)%, (11.80±1.18)%,(38.03±1.05)%, P 〈 0.01], and had no significant differences between the polygonatum polysaccharide groups and positive apoptosis group added to neurons at 12 hours after the hypoxia culture (36.77±1.45)%, (36.60±1.61)%, (36.37±2.02)%, (38.03±1.05)%, P 〉 0.05].③ Annexin V/PI flow cytometer detected that the anti-necrotic effect was enhanced with the increased concentration of polygonatum polysaccharide within 0.5-1.5 g/L (P 〈 0.01). Polygonatum polysaccharide of 0.5-1.5 g/L added before hypoxia could significantly decrease the apoptotic rate of neurons induced by hypoxia/reoxygenation (P 〈 0.01). ④ No DNA agarose gel electrophoresis ladder-like strap appeared in the groups with polygonatum polysaccharide of 0.5-1.5 g/L added at 10 hours before hypoxia;⑤ After Polygonatum polysaccharide of 0.5-1.5 g/L was added before hypoxia, the expression of Bcl-2 protein of hypoxic neurons was increased (P 〈 0.01), and those of Bax protein and Caspase-3 protein were reduced (P 〈 0.01), and the ratio of Bcl-2/Bax was increased (P 〈 0.01). CONCLUSION: Polygonatum polysaccharide within 6 g/L has no cytotoxicity on the normal cultured cerebral cortical neurons. Polygonatum polysaccharide of 0.5-1.5 g/L added before hypoxia plays a role agains necrosis of neurons induced by hypoxia. Polygonatum polysaccharide of 0.5-1.5 g/L can significantly reduce the apoptosis of neurons induced by hypoxia through up-regulating the expression of Bcl-2 protein, down-regulating the expressions of Bax protein and Caspase-3 protein, and increasing the ratio of Bcl-2/Bax. 展开更多
关键词 Effect of polygonatum polysaccharide on the hypoxia-induced apoptosis and necrosis in in vitro cultured cerebral cortical neurons from neonatal rats
下载PDF
Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism 被引量:1
9
作者 Shuang Li Chunyang Xu +3 位作者 Dongliang Li Xinjuan Li Linyu Wei Yuan Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期197-200,共4页
BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is prov... BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol. 展开更多
关键词 Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism NNOS
下载PDF
Comparison of the severity of injury of hippocampal neuron in rats induced by simulated push-pull maneuver at various degrees
10
作者 Suhong Guo Hui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期10-13,共4页
BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-p... BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-pull maneuver at various degrees on injury of hippocampal neurons in rats and analyze its phase effect. DESIGN: Randomized control study.SETTING : Physiological Department of Jilin Medical College.MATERIALS: A total of 40 healthy male Wistar rats, of clean grade, weighting 205-300 g, aged 3-4 months, were randomly divided into control group (n=4) and three push-pull experimental groups, including +2 Gz group (intensity: -2 Gz to +2 Gz, n=12), +6 Gz group (-6 Gz to +6 Gz, n=12) and +8 Gz group (-8 Gz to +8 Gz, n=12).METHODS: The experiment was completed in the Physiological Department of Jilin Military Medical College from March 2002 to May 2003. ① Rats in the experimental groups were put at the specially rolling arm of animal centrifugal machine. Then, they were pushed and pulled with ±2 Gz, ±6 Gz and ±8 Gz, respectively. The jolt was 1 Gz/s. However, rats in control group were not treated with any ways. ② Stroke index and neurological evaluation were performed on rats in the experimental groups at 0.5, 6 and 24 hours after push-pull. Stroke index was 25 points in total. The higher the scores were, the severer the cerebral injury was. Neurological evaluation was 10 points in total. The higher the scores were, the severer the nerve injury was. ③ Hippocampal tissue in brain of rats were selected to cut into sections at each time points, and form and distribution of neurons were observed in hippocampal areas with HE staining. Degrees of neuronal injury in hippocampal CA1 area were assayed after push-pull at various degrees with electron microscope. ④ Measurement data were compared with t test.MAIN OUTCOME MEASURES:① Stroke index and neurological evaluation; ② form and distribution of neurons in hippocampal areas;③ degrees of neuronal injury in hippocampal CA1 area.RESULTS: A total of 40 rats were involved in the final analysis. ① Stroke index and neurological evaluation of rats in experimental groups: At 30 minutes and 6 hours after push-pull exposure, stroke index and neurological evaluation were higher in ±6Gz group and ±8 Gz group than those in control group (P 〈 0.01), especially at 6 hours after push-pull exposure, those in ±8 Gz group were the highest at each time points [(11.00±2.16), (5.75±1.70) points]. At 24 hours after exposure, those were decreased as compared with those within the former two time points, but the values were still higher than those in control group (P 〈 0.05-0.01). ② Results of HE staining: At 6 and 24 hours after exposure, partially neuronal degeneration was observed in pyramidal layer in ±6 Gz group and ±8 Gz group, including crenation of neurons, tdangle or polygon, and karyopycnosis, especially the injury in ±8 Gz group was the most obvious at 6 hours after exposure. ③ Results of ultrastructure with electron microscope: Partially neuronal degeneration at various degrees was observed in hippocampal CA1 area in ±2 Gz group at 6 hours after exposure and in ±6 Gz group and ±8 Gz group at 6 and 24 hours after exposure. At 6 hours after exposure, nucleus of hippocampal neurons in ±8 Gz group was irregular and umbilication. Caryotin was aggregated, nuclear matrix was swelled and disorder, and vacuolation was also observed. Rough endoplasmic reticulum was expanded, mitochondrium was swelled, and crista was disappeared.CONCLUSION: ① Push-pull cannot damage hippocampal neurons of rats in ±2 Gz group. ② Exposure can cause injury of hippocampal neurons of rats in ±6Gz group and ±8 Gz group, especially the injury is the severest at 6 hours after exposure in ±8 Gz group and relieves gradually 24 hours later. 展开更多
关键词 Comparison of the severity of injury of hippocampal neuron in rats induced by simulated push-pull maneuver at various degrees
下载PDF
Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats
11
作者 Zangong Zhou Xiangyu Ji Li Song Jianfang Song Shiduan Wang Yanwei Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期313-316,共4页
BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the s... BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats. OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal tria SETTING : Department of Anesthesiology, the Medical School Hospital of Qingdao University MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents: homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd., Wuhan). METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal morphology was observed. AQP-4 expression and neuronal apoptosis were measured with immunohistochemical method and TUNEL method respectively. MAIN OUTCOME MEASURES: Water content in brain tissue, neuronal morphology, the number of AQP-4 positive neurons and TUNEL positive neurons in rats of two groups at each time point after injury. RESULTS: Totally 150 rats entered the stage of result analysis. (1) Water content of brain tissue: The water content of brain tissue at each time point after injury in the ketamine-treated group was lower than that in the control group. There were very significant differences in water content at 12 and 24 hours after injury respectively between ketamine-treated group and control group [(77.34±2.35)% vs. (82.31 ±1.48)%; (78.01 ±2.21 )% vs. (83.86±2.37)%, t=-4.001 6,4.036 7, both P 〈 0.01]. (2) Neuronal morphology: Pathological changes in traumatic region and peripheral region of injury in the ketamine-treated group were significantly lessened, and necrotic and apoptotic cells in the ketamine-treated group were also significantly reduced as compared with control group. (3) AQP-4 expression: AQP-4 positive neurons at each time point in the ketamine-treated group were significantly less than those in the control group. There were very significant differences in AQP-4 expression at 12 and 24 hours after injury between ketamine-treated group and control group [(34.17±4.74) /visual field vs. (43.42±5.65) /visual field;(40.83±3.17) /visual field vs. (58.88±6.23) /visual field,t=3.966 3,8.165 7, both P〈 0.01]. (4) Neuronal apoptosis: TUNEL positive neurons at each time point in the ketamine-treated group were less than those in the control group. There were very significant differences in the neuronal apoptosis at 12 and 24 hours after injury between ketamine-treated group and control group [(26.25±3.04) /visual field vs. (32.75±4.39) /visual field; (29.33± 4.02) /visual field vs. (39.83±5.61) /visual field,t=-3.849 3,5.169 2,both P 〈 0.01]. CONCLUSION: Ketamine can reduce brain edema, AQP-4 expression and neuronal apoptosis following brain injury in rats, and has obvious therapeutic effect on brain injury, especially at 12 and 24 hours after injury. 展开更多
关键词 Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats
下载PDF
End-to-side neurorrhaphy repairs peripheral nerve injury:sensory nerve induces motor nerve regeneration
12
作者 Qing Yu She-hong Zhang +3 位作者 Tao Wang Feng Peng Dong Han Yu-dong Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1703-1707,共5页
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent ne... End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent nerve(donor nerve).However,the motor-sensory specificity after end-to-side neurorrhaphy remains unclear.This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy.Thirty rats were randomized into three groups:(1) end-to-side neurorrhaphy using the ulnar nerve(mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve;(2) the sham group:ulnar nerve and cutaneous antebrachii medialis nerve were just exposed;and(3) the transected nerve group:cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied.At 5 months,acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group,and none of the myelinated axons were stained in either the sham or transected nerve groups.Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%.In contrast,no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment.These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. 展开更多
关键词 nerve regeneration peripheral nerve injury end-to-side neurorrhaphy motor-sensory specificity rat dorsal root ganglion motor neuron axon cutaneous antebrachii medialis nerve ulnar nerve acetylcholinesterase staining retrograde neuron tracing neural regeneration
下载PDF
Cadmium Activates Reactive Oxygen Species-dependent AKT/mT OR and Mitochondrial Apoptotic Pathways in Neuronal Cells 被引量:8
13
作者 YUAN Yan WANG Yi +8 位作者 HU Fei Fei JIANG Chen Yang ZHANG Ya Jing YANG Jin Long ZHAO Shi Wen GU Jian Hong LIU Xue Zhong BIAN Jian Chun LIU Zong Ping 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2016年第2期117-126,共10页
Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated w... Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases. 展开更多
关键词 CADMIUM Apoptosis AKT/m TOR pathway Mitochondrial apoptotic pathway Primary rat cerebral cortical neurons PC12 cells
下载PDF
Neurotrophic effects of 7,8-dihydroxycoumarin in primary cultured rat cortical neurons 被引量:3
14
作者 Li Yan Xiaowen Zhou +2 位作者 Xing Zhou Zheng Zhang Huan-Min Luo 《Neuroscience Bulletin》 SCIE CAS CSCD 2012年第5期493-498,共6页
Objective Neuronal loss in the central nervous system is central to the occurrence of neurodegenerative diseases. Pharmaceutical companies have devoted much effort to developing new drugs against such diseases, since ... Objective Neuronal loss in the central nervous system is central to the occurrence of neurodegenerative diseases. Pharmaceutical companies have devoted much effort to developing new drugs against such diseases, since there are currently no effective drugs for neurodegenerative disease treatment. Promoting the capacity for nerve regeneration is an ideal treatment target. The present study aimed to investigate the neurotrophic effects of 7,8-dihydroxycoumarin (DHC) or daphnetin in primary cultured rat cortical neurons. Methods Cortical neurons were identified by microtubule-associated protein 2 (MAP2) immunostaining. Morphological observation was used to measure the average length of neurite outgrowth. MTT and lactate dehydrogenase assays were used to assess neuronal survival. The mRNA expression of MAP2 and brain-derived neurotrophic factor (BDNF) was measured by RT-PCR. Results MAP2 immunostaining showed that most of the cultured cells were neurons. Compared with the vehicle control group, DHC promoted neurite outgrowth and prolonged neuronal survival time at concentrations ranging from 2 to 8 μmol/L. Expression of both BDNF mRNA and MAP2 mRNAwas increased in the groups treated with 2, 4 and 8 μmol/L DHC. Conclusion DHC significantly increases neurite outgrowth and promotes neuronal survival in primary cultured rat cortical neurons. The neurotrophic effects of DHC are probably associated with increased BDNF expression. 展开更多
关键词 7 8-dihydroxycoumarin DAPHNETIN rat cortical neurons brain-derived neurotrophic factor neurodegenerative disease
原文传递
MORPHOLOGICAL STUDY OF FETAL NEOCORTICAL TRANSPLANT GRAFTED TO THE CEREBRAL CORRESPONDING AREA IN YOUNG RATS DIFFERENTIATION OF IMMATURE NEURONS AND RECIPROCAL CONNECTIONS OF FIBERS BETWEEN GRAFT-HOST BRAIN
15
作者 吴克兰 黄剑 《Chinese Medical Journal》 SCIE CAS CSCD 1994年第11期64-69,共6页
The fetal neocortical transplant (E15-17 days gestation) of Wistar rat was grafted to the corresponding neocortical region (frontal-parietal lobe) of the same strain in young rats (4-5 weeks old). On the 7th, 15th, 30... The fetal neocortical transplant (E15-17 days gestation) of Wistar rat was grafted to the corresponding neocortical region (frontal-parietal lobe) of the same strain in young rats (4-5 weeks old). On the 7th, 15th, 30th, 60th, 150th day after transplantation, the sections cut through the middle area of graft-ost brain were examined by HE, Nissl, Glees stain, immunohistochemical technique for GFAP and NF, Nissl, Glees stain, immunohistochemical technique for GFAP and NF, acetylcholinesterase (AChE) histochemistry as well as horseradish peroxidase (HRP) retrograde tracing with light microscope. Some of the sections were also examined with TEM. The result showed that most immature neurons within the graft can survive, grow, differentiate and mature, and are similar to the structure of the neocortical neurons of host brain. This study also provides patterns of integration of the interface between graft-host brain varying with the proliferation of reactive astrocyte as well as graft-host reciprocal connection of fibers. 展开更多
关键词 In GFAP MORPHOLOGICAL STUDY OF FETAL NEOCORTICAL TRANSPLANT GRAFTED TO THE CEREBRAL CORRESPONDING AREA IN YOUNG ratS DIFFERENTIATION OF IMMATURE neurons AND RECIPROCAL CONNECTIONS OF FIBERS BETWEEN GRAFT-HOST BRAIN
原文传递
Effect of Zhongfeng Naodeping Granule on Hippocampal Excitatory Amino Acid and Neuron of Stroke-Prone Spontaneously Hypertensive Rats with Hemorrhagic Apoplexy
16
作者 蒋玉凤 朱陵群 +3 位作者 黄启福 邹丽琰 李伯光 严京 《Chinese Journal of Integrative Medicine》 SCIE CAS 1998年第3期234-234,共0页
Objective: To observe the effects ofZhongfeng Naodeping Granule (ZFNDPG) onhemorrhagic apoplexy. Methods: The strokeprone spontaneously hypertensive rats(SHRsp ) were used to study effects ofZFNDPG on hemorrhage apopl... Objective: To observe the effects ofZhongfeng Naodeping Granule (ZFNDPG) onhemorrhagic apoplexy. Methods: The strokeprone spontaneously hypertensive rats(SHRsp ) were used to study effects ofZFNDPG on hemorrhage apoplexy. Excitatoryamino acid (EAA) concentration in hippocampus sector, neuronal density and ultrastructural changes in hippocampal CAI sector weremeasured. Results: In pathological modelgroup glutamate (Gin) and aspartate (Asp)concentration elevated obviously. With theZFNDPG treating SHRsp of hemorrhagicapoplexy, Gin and Asp concentration in hippocampal sector could be markedly inhibited,compared with model group, P < 0.05-0. 01. Neuronal morphology was observed:neurone injury was mild and neuronal densityincreased in hippocampal CA1 sector of treatment group, compared with model group, P< 0. 01. Electron microscopy showed t edema,degeneration and necrosis caused by hemorrhagic apoplexy were improved after theZFNDPG treatment. Conclusions: Effects ofprotecting neurone for SHRsp on hemorrhagicapoplexy might be associated with thatZFNDPG inhibited concentration of EAA. 展开更多
关键词 Effect of Zhongfeng Naodeping Granule on Hippocampal Excitatory Amino Acid and Neuron of Stroke-Prone Spontaneously Hypertensive rats with Hemorrhagic Apoplexy
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部