The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed...The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.展开更多
In this paper,a generalized model of the reactive distillation processes was developed via rate-based approach. The homotopy-continuation method was employed to solve the complicated nonlinear model equations efficien...In this paper,a generalized model of the reactive distillation processes was developed via rate-based approach. The homotopy-continuation method was employed to solve the complicated nonlinear model equations efficiently. The simulation on the reactive distillation processes was carried out with the profiles of stage temperature,composition and flow rate for both vapor and liquid phases obtained. Based on careful analysis of the simulation results, the pitfalls in experimental design were detected. Finally, a software package for the simulation of reactive distillation processes was developed.展开更多
This study investigated the prospect of using aqueous mixture of 1-butylpyridinium tetrafluoroborate ([Bpy][BF4]) ionic liquid (IL) and monoethanolamine (MEA) as solvent in post-combustion CO2 capture (PCC) pr...This study investigated the prospect of using aqueous mixture of 1-butylpyridinium tetrafluoroborate ([Bpy][BF4]) ionic liquid (IL) and monoethanolamine (MEA) as solvent in post-combustion CO2 capture (PCC) process. This is done by analysis of the process through modelling and simulation. In literature, reported PCC models with a mixture of IL and MEA solvent were developed using equilibrium-based mass transfer approach. In contrast, the model in this study is developed using rate-based mass transfer approach in Aspen Plus. From the results, the mixed aqueous solvent with 5-30 wt% IL and 30 wt% MEA showed 7%-9% and 12%-27% less specific regeneration energy and solvent circulation rate respectively compared to commonly used 30 wt% MEA solvent. It is concluded that the |L concentration (wt%) in the solvent blend have significant impact on specific regeneration energy and solvent circulation rate. This study is a starting point for further research on technical and economic analysis of PCC process with aqueous blend of IL and MEA as solvent.展开更多
In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model...In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.展开更多
Considerable protocol development efforts in recent ATM (Asynchronous Transfer Mode) Forum activities have been focused on the traffic management of available bit rate (ABR) service. It has been shown that ABR service...Considerable protocol development efforts in recent ATM (Asynchronous Transfer Mode) Forum activities have been focused on the traffic management of available bit rate (ABR) service. It has been shown that ABR service enables persistent, greedy data sources to efficiently utilize ATM network resources with the help of a rate-based flow control mechanism. ATM Forum Traffic Management Specification Version 4.0 document gives a complete description of the end system behavior of the flow control mechanism, but it leaves the details of the switch behavior to be vendor-implementation dependent. For the sake of compatibility and interoperation among flow control mechanisms implemented by vendors, two rate-based mechanisms EPRCA (Enhanced Proportional Rate Control Algorithm) and ERICA (Explicit Rate Indication for Congestion Avoidance) have been recommended in the specification. In this paper, the mechanisms are studied and their performance is analyzed and compared with a material network. Simulation shows that ERICA is significantly better than EPRCA in the performance of steady state and instantaneous state of source end system ACR (Allowed Cell Rate) and buffer queue of bottleneck switch.展开更多
基金Supported by the National Natural Science Foundation of China(21776074,21576081,2181101120).
文摘The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.
基金Supported by the State Key Project of the National Natural Science Foundation of China (No.2929054)
文摘In this paper,a generalized model of the reactive distillation processes was developed via rate-based approach. The homotopy-continuation method was employed to solve the complicated nonlinear model equations efficiently. The simulation on the reactive distillation processes was carried out with the profiles of stage temperature,composition and flow rate for both vapor and liquid phases obtained. Based on careful analysis of the simulation results, the pitfalls in experimental design were detected. Finally, a software package for the simulation of reactive distillation processes was developed.
文摘This study investigated the prospect of using aqueous mixture of 1-butylpyridinium tetrafluoroborate ([Bpy][BF4]) ionic liquid (IL) and monoethanolamine (MEA) as solvent in post-combustion CO2 capture (PCC) process. This is done by analysis of the process through modelling and simulation. In literature, reported PCC models with a mixture of IL and MEA solvent were developed using equilibrium-based mass transfer approach. In contrast, the model in this study is developed using rate-based mass transfer approach in Aspen Plus. From the results, the mixed aqueous solvent with 5-30 wt% IL and 30 wt% MEA showed 7%-9% and 12%-27% less specific regeneration energy and solvent circulation rate respectively compared to commonly used 30 wt% MEA solvent. It is concluded that the |L concentration (wt%) in the solvent blend have significant impact on specific regeneration energy and solvent circulation rate. This study is a starting point for further research on technical and economic analysis of PCC process with aqueous blend of IL and MEA as solvent.
文摘In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.
基金the National Natural Science Foundation of China (No.69896249).
文摘Considerable protocol development efforts in recent ATM (Asynchronous Transfer Mode) Forum activities have been focused on the traffic management of available bit rate (ABR) service. It has been shown that ABR service enables persistent, greedy data sources to efficiently utilize ATM network resources with the help of a rate-based flow control mechanism. ATM Forum Traffic Management Specification Version 4.0 document gives a complete description of the end system behavior of the flow control mechanism, but it leaves the details of the switch behavior to be vendor-implementation dependent. For the sake of compatibility and interoperation among flow control mechanisms implemented by vendors, two rate-based mechanisms EPRCA (Enhanced Proportional Rate Control Algorithm) and ERICA (Explicit Rate Indication for Congestion Avoidance) have been recommended in the specification. In this paper, the mechanisms are studied and their performance is analyzed and compared with a material network. Simulation shows that ERICA is significantly better than EPRCA in the performance of steady state and instantaneous state of source end system ACR (Allowed Cell Rate) and buffer queue of bottleneck switch.