The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible ...The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.展开更多
The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of ...The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of mechanical and electromagnetic waves. We propose to generalize the Doppler effect to the case of frequency changes of certain oscillatory variables in biology before and after puberty, starting from the basis that a metabolically accelerated system is equivalent to a mechanically accelerated system. We then established the following objectives: To verify if there is an average difference in heart and respiratory rates, before and after puberty. To verify the association of these frequency differences with the metabolic activity estimated as basal metabolic rate or BMR. We studied heart and respiratory rate data from healthy people of both sexes, verifying the frequency distribution before and after puberty. We also study the relationship of the frequency distribution with the evolution of the basal metabolic rate throughout life. Analysis of the results shows that the highest heart and respiratory rates occur before puberty, while the lowest rates occur after puberty. A high correlation of the evolution of the variables studied with the evolution of the metabolic acceleration of the system throughout life is also evident. Taking into account that a mechanically accelerated system is equivalent to a metabolically accelerated system, we can conclude that the frequency distribution found is the expression of a generalization of the Doppler effect in the case of biological physical systems.展开更多
North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change r...North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.展开更多
More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven...More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven methods have clear physical mechanisms and reliable evaluation results but the calculation process is time-consuming,while the data-driven methods have the strong fitting ability and fast calculation speed but the evaluation results lack interpretation.Therefore,it is a future development trend of transient stability assessment methods to combine these two kinds of methods.In this paper,the rate of change of the kinetic energy method is used to calculate the transient stability in the model-driven stage,and the support vector machine and extreme learning machine with different internal principles are respectively used to predict the transient stability in the data-driven stage.In order to quantify the credibility level of the data-driven methods,the credibility index of the output results is proposed.Then the switching function controlling whether the rate of change of the kinetic energy method is activated or not is established based on this index.Thus,a newparallel integratedmodel-driven and datadriven online transient stability assessment method is proposed.The accuracy,efficiency,and adaptability of the proposed method are verified by numerical examples.展开更多
Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventi...Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.展开更多
This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency sh...This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.展开更多
[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield...[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield and quality cultivation.[Method] The photosynthetic physiological properties of leaves of different types of Prunus domestica × armeniaca were measured by the Li-6400 portable photosynthesis system indifferent seasons. By this method could analysis of photosyntheticcharacteristicsfor different types of Prunus domestica×armeniaca in different seasons.[Result] Daily change of photosyntheticrate(Pn) for Prunus domestica×armeniaca in differentseasons showed a "double-peak" curve. The peak values were at 10:00 and16:00. The Pn of ‘Fengweihuanghou', ‘Konglongdan', ‘Weihou', ‘Weiwang' and‘Weidi' reached the maximum in July, theywere 13.75, 14.76, 12.96, 13.3, and 11.9μmol/(m^2·s), respectively. The Pn of Prunus domestica×armeniaca reached minimumin August, they were 9.78, 10.71, 12.02, 10.43 μmol/(m^2·s). The Pn overall average of ‘Konglongdan' was highest,it reached 12.65 μmol/(m^2·s).The Pn overall average of ‘Weiwang' was lowest, it reached 11.31μmol/(m^2·s). There were extremely significant positive correlation between the Pn and Gs(P0.01). [Conclusion] Daily change of photosyntheticrate for Prunus domestica ×armeniaca in differentseasons showed a "double-peak" curve, showing significant phenomenon of "midday depression".The photosynthesis intensity of Prunus domestica ×armeniaca was strongest in July, and the photosynthesis intensity was weakest in August. ‘Konglongdan'showed the strongest photosynthesis capacity, ‘Weihou' and ‘Weiwang', followed.There were highest correlation between the Pn and stoma conductance(Gs).展开更多
The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change...The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change is really a sensitive integral variation value of many variations, or a combined function of coupling effects of various big systems. Therefore the above mentioned superposed action of different systems and the coupling effect of sun earth and biological aspects may be called as sun earth biological coupling effect system. Based on this hypothesis, the corresponding sun dynamic, air dynamic, water dynamic and earth dynamic conceptional models are established in order to research the multiple coupling effects and feedback machsnism between these big systems. In order to determine the relations, effectness and coherent relation of different variations, the quantity, analysis is conducted through collective variation and stage division. The quantity analysis indicates that the earths spindle rotation speed is the dynamic mechanism controlling the sea level change of fluctuation. The change rate of sea level in the world is +1.32 + 0.22 mm/a, while the sea level change rate in China is only+1.39 + 0.26 mm/a in average. If take the CO2 content as the climate marker, eight cold stages (periods) are grouped out since two hundreds years AC. The extreme cold of the eighth cold stage started approximately at 1850 years AC. and if the stage from the extreme cold to extreme warm is determined as long as 200 years, the present ongoing warm stage will end at about 2050 years, there after the temperature will begin to tower. If the stage between cold and warm extremes lasts for 250 years, then the temperature will become lower at about 2100 year. Until to that time, the sea-level is estimated to raise +7 - +11 + 3.5 cm again, and there after, the sea level will begin the new lowering trend. In the same time, the climate will enter into next new cold stage subsequently.展开更多
Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QT...Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence.展开更多
Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can ob...Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can obtain the direction of the target with phase information of two orthogonal interferometers on the observer and the radial distance with the corresponding phase rate of change. Then the target can be located with high speed and precision. A locating approach is given when the flying posture of t...展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
Acid rain has been recognized as a serious environmental problem in China since the 1980s, but little is known about the effects of the climatic change in regional precipitation on the temporal and spatial variability...Acid rain has been recognized as a serious environmental problem in China since the 1980s, but little is known about the effects of the climatic change in regional precipitation on the temporal and spatial variability of severe acid rain. We present the effects of the regional precipitation trend change on the area and intensity of severe acid rain in southern China, and the spatio-temporal distribution characteristics of SO2 and NO2 concentrations are analyzed on the basis of SO2 and NO2 column concentration data. The results are as follows. (1) The emission levels of SO2 and NO2 have reached or passed the precipitation scavenging capacity in parts of southern China owing to the emission totals of SOz and NO2 increasing from 1993 to 2004. (2) Notable changes in the proportion of cities subject to severe acid rain occurred mainly in the south of the middle-lower reaches of the Yangtze River during 1993-2004. With an abrupt change in 1999, the severe acid rain regions were mainly located in central and western China during 1993-1999 and moved obviously eastward to the south of the lower-middle reaches of the Yangtze River with the proportion of cities subject to severe acid rain increasing significantly from 2000 to 2004. (3) The spatial distribution and variation in the seasonal precipitation change rate of more than 10 mm/10a are similar to those of severe acid rain in southern China. An abrupt change in 1999 is seen for winter and summer precipitation, the same as for the proportion of cities subject to severe acid rain in southern China. The significant increase in summer storm precipitation from 1991 to 1999 mitigated the annual precipitation acidity in the south of the Yangtze River and reduced the area of severe acid rainfall. On the other hand, the decrease in storm rainfall in summer expanded the area of severe acid rainfall in the south of the Yangtze River in 2000-2006. Therefore, the change in seasonal precipitation is an important factor in the severe acid rain regions moving eastward and expanding in southern China.展开更多
This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to2020.The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions us...This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to2020.The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions using Digital Shoreline Analysis System(DSAS).By the estimation of End Point Rate(EPR)and Linear Regression Rate(LRR),it is quantified that the maximum erosion is 5.01 m/yr(EPR)and 6.13 m/yr(LRR)consistently with the maximum accretion of 3.77 m/yr(EPR)and 3.11 m/yr(LRR)along the entire coastal stretch of 77 km.The future shoreline predicted using the Kalman filter forecasted that Inayam,Periyakattuthurai and Kodimunai are highly prone to erosion with a shift of 170 m,157 m and 145 m by 2030 and 194 m,182 m and 165 m by 2040 towards the land.Also,the western coast is highly prone to erosion and it is predicted that certain villages are prone to loss of economy and livelihood.The outcome of this study may guide the coastal researchers to understand the evolution and decisionmakers to evolve with alternative sustainable management plans in the future.展开更多
The selection of a suitable discretization method(DM) to discretize spatially continuous variables(SCVs)is critical in ML-based natural hazard susceptibility assessment. However, few studies start to consider the infl...The selection of a suitable discretization method(DM) to discretize spatially continuous variables(SCVs)is critical in ML-based natural hazard susceptibility assessment. However, few studies start to consider the influence due to the selected DMs and how to efficiently select a suitable DM for each SCV. These issues were well addressed in this study. The information loss rate(ILR), an index based on the information entropy, seems can be used to select optimal DM for each SCV. However, the ILR fails to show the actual influence of discretization because such index only considers the total amount of information of the discretized variables departing from the original SCV. Facing this issue, we propose an index, information change rate(ICR), that focuses on the changed amount of information due to the discretization based on each cell, enabling the identification of the optimal DM. We develop a case study with Random Forest(training/testing ratio of 7 : 3) to assess flood susceptibility in Wanan County, China.The area under the curve-based and susceptibility maps-based approaches were presented to compare the ILR and ICR. The results show the ICR-based optimal DMs are more rational than the ILR-based ones in both cases. Moreover, we observed the ILR values are unnaturally small(<1%), whereas the ICR values are obviously more in line with general recognition(usually 10%–30%). The above results all demonstrate the superiority of the ICR. We consider this study fills up the existing research gaps, improving the MLbased natural hazard susceptibility assessments.展开更多
The transmission of coronavirus disease 2019(COVID-19)has presented challenges for the control of the indoor environment of isolation wards.Scientific air distribution design and operation management are crucial to en...The transmission of coronavirus disease 2019(COVID-19)has presented challenges for the control of the indoor environment of isolation wards.Scientific air distribution design and operation management are crucial to ensure the environmental safety of medical staff.This paper proposes the application of adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants dispersion,removal efficiency,thermal comfort,and operating expense.Adaptive wall-based attachment ventilation provides a direct supply of fresh air to the occupied zone.In comparison with a ceiling air supply or upper sidewall air supply,adaptive wall-based attachment ventilation results in a 15%–47%lower average concentration of contaminants,for a continual release of contaminants at the same air changes per hour(ACH;10 h^(-1)).The contaminant removal efficiency of complete mixing ventilation cannot exceed 1.For adaptive wall-based attachment ventilation,the contaminant removal efficiency is an exponential function of the ACH.Compared with the ceiling air supply mode or upper sidewall air supply mode,adaptive wall-based attachment ventilation achieves a similar thermal comfort level(predicted mean vote(PMV)of0.1–0.4;draught rate of 2.5%–6.7%)and a similar performance in removing contaminants,but has a lower ACH and uses less energy.展开更多
The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experie...The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.展开更多
The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based r...The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.展开更多
To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the e...To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.展开更多
The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its un...The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space svstems and technologiesi.展开更多
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2019S1A5B5A02041334).
文摘The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.
文摘The Doppler effect can be defined as the frequency shift suffered by a wave phenomenon, when there is a difference in relative speed between the waves generated and their source. We know that it occurs in the case of mechanical and electromagnetic waves. We propose to generalize the Doppler effect to the case of frequency changes of certain oscillatory variables in biology before and after puberty, starting from the basis that a metabolically accelerated system is equivalent to a mechanically accelerated system. We then established the following objectives: To verify if there is an average difference in heart and respiratory rates, before and after puberty. To verify the association of these frequency differences with the metabolic activity estimated as basal metabolic rate or BMR. We studied heart and respiratory rate data from healthy people of both sexes, verifying the frequency distribution before and after puberty. We also study the relationship of the frequency distribution with the evolution of the basal metabolic rate throughout life. Analysis of the results shows that the highest heart and respiratory rates occur before puberty, while the lowest rates occur after puberty. A high correlation of the evolution of the variables studied with the evolution of the metabolic acceleration of the system throughout life is also evident. Taking into account that a mechanically accelerated system is equivalent to a metabolically accelerated system, we can conclude that the frequency distribution found is the expression of a generalization of the Doppler effect in the case of biological physical systems.
基金supported by the National Natural Science Foundation of China(41304060)the national key basic research and development plan(2013CB733304)
文摘North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment(GRACE) gravity data from 2009 to 2013 are used to calculate the gravity change rate(GCR) using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji(Beijing-Tianjin-Hebei Province), and Bohai Bay Basin(BBB) regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be "negativepositive-negative" from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Co.,Ltd.(Project No.520530200013).
文摘More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven methods have clear physical mechanisms and reliable evaluation results but the calculation process is time-consuming,while the data-driven methods have the strong fitting ability and fast calculation speed but the evaluation results lack interpretation.Therefore,it is a future development trend of transient stability assessment methods to combine these two kinds of methods.In this paper,the rate of change of the kinetic energy method is used to calculate the transient stability in the model-driven stage,and the support vector machine and extreme learning machine with different internal principles are respectively used to predict the transient stability in the data-driven stage.In order to quantify the credibility level of the data-driven methods,the credibility index of the output results is proposed.Then the switching function controlling whether the rate of change of the kinetic energy method is activated or not is established based on this index.Thus,a newparallel integratedmodel-driven and datadriven online transient stability assessment method is proposed.The accuracy,efficiency,and adaptability of the proposed method are verified by numerical examples.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.
文摘This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.
基金Supported by High-quality and High-efficient Cultivation Technology Demonstration and Promotion of Apricot and Plum(ZYLYKJTG2015020)~~
文摘[Objective] The aim of this study was to explore the daily change of photosyntheticratefor Prunus domestica ×armeniacain different growing seasons. The study can provide theoretical basis for arid area high yield and quality cultivation.[Method] The photosynthetic physiological properties of leaves of different types of Prunus domestica × armeniaca were measured by the Li-6400 portable photosynthesis system indifferent seasons. By this method could analysis of photosyntheticcharacteristicsfor different types of Prunus domestica×armeniaca in different seasons.[Result] Daily change of photosyntheticrate(Pn) for Prunus domestica×armeniaca in differentseasons showed a "double-peak" curve. The peak values were at 10:00 and16:00. The Pn of ‘Fengweihuanghou', ‘Konglongdan', ‘Weihou', ‘Weiwang' and‘Weidi' reached the maximum in July, theywere 13.75, 14.76, 12.96, 13.3, and 11.9μmol/(m^2·s), respectively. The Pn of Prunus domestica×armeniaca reached minimumin August, they were 9.78, 10.71, 12.02, 10.43 μmol/(m^2·s). The Pn overall average of ‘Konglongdan' was highest,it reached 12.65 μmol/(m^2·s).The Pn overall average of ‘Weiwang' was lowest, it reached 11.31μmol/(m^2·s). There were extremely significant positive correlation between the Pn and Gs(P0.01). [Conclusion] Daily change of photosyntheticrate for Prunus domestica ×armeniaca in differentseasons showed a "double-peak" curve, showing significant phenomenon of "midday depression".The photosynthesis intensity of Prunus domestica ×armeniaca was strongest in July, and the photosynthesis intensity was weakest in August. ‘Konglongdan'showed the strongest photosynthesis capacity, ‘Weihou' and ‘Weiwang', followed.There were highest correlation between the Pn and stoma conductance(Gs).
基金supported by the National Natural Foundation of China(40940025)National Science Foundation of Tianjin(07ZCGYSF02400,09JCYBJC07400)+2 种基金Program of China"973"(2007CB411807)Open Fund of the Key Lab of Global Change and Marine-Atmospheric Chemistry,SOA(GCMAC0806)National Natural ScienceFoundation(41006002)
文摘The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change is really a sensitive integral variation value of many variations, or a combined function of coupling effects of various big systems. Therefore the above mentioned superposed action of different systems and the coupling effect of sun earth and biological aspects may be called as sun earth biological coupling effect system. Based on this hypothesis, the corresponding sun dynamic, air dynamic, water dynamic and earth dynamic conceptional models are established in order to research the multiple coupling effects and feedback machsnism between these big systems. In order to determine the relations, effectness and coherent relation of different variations, the quantity, analysis is conducted through collective variation and stage division. The quantity analysis indicates that the earths spindle rotation speed is the dynamic mechanism controlling the sea level change of fluctuation. The change rate of sea level in the world is +1.32 + 0.22 mm/a, while the sea level change rate in China is only+1.39 + 0.26 mm/a in average. If take the CO2 content as the climate marker, eight cold stages (periods) are grouped out since two hundreds years AC. The extreme cold of the eighth cold stage started approximately at 1850 years AC. and if the stage from the extreme cold to extreme warm is determined as long as 200 years, the present ongoing warm stage will end at about 2050 years, there after the temperature will begin to tower. If the stage between cold and warm extremes lasts for 250 years, then the temperature will become lower at about 2100 year. Until to that time, the sea-level is estimated to raise +7 - +11 + 3.5 cm again, and there after, the sea level will begin the new lowering trend. In the same time, the climate will enter into next new cold stage subsequently.
基金supported by the China Key Research Project for Global Change (No.2010CB951404) the China National Science Foundation (No.40821001)
文摘Based on data from six meteorological stations in the permafrost regions, 60 boreholes for long-term monitoring of permafrost temperatures, and 710 hand-dug pits and shallow boreholes on the Qinghai-Tibet Plateau (QTP), the spatiotemporal variability of permafrost degradation was closely examined in relation to the rates of changes in air, surface, and ground temperatures. The de- cadal averages and increases in the mean annual air temperatures (MAATs) from 1961-2010 were the largest and most persistent during the last century. MAATs rose by 1.3 ℃, with an average increase rate of 0.03 ℃/yr. The average of mean annual ground surface temperatures (MAGSTs) increased by 1.3 ℃ at an average rate of 0.03 ℃/yr. The rates of changes in ground temperatures were -0.01 to 0.07 ℃/yr. The rates of changes in the depths of the permafrost table were -1 to +10 cm/yr. The areal extent of permafrost on the QTP shrank from about 1.50× 10^6 km^2 in 1975 to about 1.26× 10^6 km^2 in 2006. About 60% of the shrinkage in area of permafrost occurred during the period from 1996 to 2006. Due to increasing air temperature since the late 1980s, warm (〉-1 ℃) permafrost has started to degrade, and the degradation has gradually expanded to the zones of transitory (-1 to -2 ℃) and cold (〈-2 ℃) permafrost. Permafrost on the southern and southeastem plateau degrades more markedly. It is projected that the degradation of permafrost is likely to accelerate, and substantial changes in the distributive features and thermal regimes of permafrost should be anticipated. However, regarding the relationships between degrading permafrost and the degradation of rangelands, it is still too early to draw reliable conclusions due to inadequate scientific criteria and evidence.
文摘Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can obtain the direction of the target with phase information of two orthogonal interferometers on the observer and the radial distance with the corresponding phase rate of change. Then the target can be located with high speed and precision. A locating approach is given when the flying posture of t...
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金Concentrated fund item of national science and technology foundation work, No.2005DKA31700-06-20Special fund from China Meteorological Administration,No.CCSF2006-32
文摘Acid rain has been recognized as a serious environmental problem in China since the 1980s, but little is known about the effects of the climatic change in regional precipitation on the temporal and spatial variability of severe acid rain. We present the effects of the regional precipitation trend change on the area and intensity of severe acid rain in southern China, and the spatio-temporal distribution characteristics of SO2 and NO2 concentrations are analyzed on the basis of SO2 and NO2 column concentration data. The results are as follows. (1) The emission levels of SO2 and NO2 have reached or passed the precipitation scavenging capacity in parts of southern China owing to the emission totals of SOz and NO2 increasing from 1993 to 2004. (2) Notable changes in the proportion of cities subject to severe acid rain occurred mainly in the south of the middle-lower reaches of the Yangtze River during 1993-2004. With an abrupt change in 1999, the severe acid rain regions were mainly located in central and western China during 1993-1999 and moved obviously eastward to the south of the lower-middle reaches of the Yangtze River with the proportion of cities subject to severe acid rain increasing significantly from 2000 to 2004. (3) The spatial distribution and variation in the seasonal precipitation change rate of more than 10 mm/10a are similar to those of severe acid rain in southern China. An abrupt change in 1999 is seen for winter and summer precipitation, the same as for the proportion of cities subject to severe acid rain in southern China. The significant increase in summer storm precipitation from 1991 to 1999 mitigated the annual precipitation acidity in the south of the Yangtze River and reduced the area of severe acid rainfall. On the other hand, the decrease in storm rainfall in summer expanded the area of severe acid rainfall in the south of the Yangtze River in 2000-2006. Therefore, the change in seasonal precipitation is an important factor in the severe acid rain regions moving eastward and expanding in southern China.
文摘This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to2020.The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions using Digital Shoreline Analysis System(DSAS).By the estimation of End Point Rate(EPR)and Linear Regression Rate(LRR),it is quantified that the maximum erosion is 5.01 m/yr(EPR)and 6.13 m/yr(LRR)consistently with the maximum accretion of 3.77 m/yr(EPR)and 3.11 m/yr(LRR)along the entire coastal stretch of 77 km.The future shoreline predicted using the Kalman filter forecasted that Inayam,Periyakattuthurai and Kodimunai are highly prone to erosion with a shift of 170 m,157 m and 145 m by 2030 and 194 m,182 m and 165 m by 2040 towards the land.Also,the western coast is highly prone to erosion and it is predicted that certain villages are prone to loss of economy and livelihood.The outcome of this study may guide the coastal researchers to understand the evolution and decisionmakers to evolve with alternative sustainable management plans in the future.
文摘The selection of a suitable discretization method(DM) to discretize spatially continuous variables(SCVs)is critical in ML-based natural hazard susceptibility assessment. However, few studies start to consider the influence due to the selected DMs and how to efficiently select a suitable DM for each SCV. These issues were well addressed in this study. The information loss rate(ILR), an index based on the information entropy, seems can be used to select optimal DM for each SCV. However, the ILR fails to show the actual influence of discretization because such index only considers the total amount of information of the discretized variables departing from the original SCV. Facing this issue, we propose an index, information change rate(ICR), that focuses on the changed amount of information due to the discretization based on each cell, enabling the identification of the optimal DM. We develop a case study with Random Forest(training/testing ratio of 7 : 3) to assess flood susceptibility in Wanan County, China.The area under the curve-based and susceptibility maps-based approaches were presented to compare the ILR and ICR. The results show the ICR-based optimal DMs are more rational than the ILR-based ones in both cases. Moreover, we observed the ILR values are unnaturally small(<1%), whereas the ICR values are obviously more in line with general recognition(usually 10%–30%). The above results all demonstrate the superiority of the ICR. We consider this study fills up the existing research gaps, improving the MLbased natural hazard susceptibility assessments.
基金supported by the Ministry of Science and Technology of China,the Chinese Academy of Engineering,a project on the risk prevention and control of the relationship between the spread of COVID-19 and the environment(2020YFC0842500 and 2020-ZD-15)the National Key Research and Development(R&D)Program of China(2017YFC0702800).
文摘The transmission of coronavirus disease 2019(COVID-19)has presented challenges for the control of the indoor environment of isolation wards.Scientific air distribution design and operation management are crucial to ensure the environmental safety of medical staff.This paper proposes the application of adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants dispersion,removal efficiency,thermal comfort,and operating expense.Adaptive wall-based attachment ventilation provides a direct supply of fresh air to the occupied zone.In comparison with a ceiling air supply or upper sidewall air supply,adaptive wall-based attachment ventilation results in a 15%–47%lower average concentration of contaminants,for a continual release of contaminants at the same air changes per hour(ACH;10 h^(-1)).The contaminant removal efficiency of complete mixing ventilation cannot exceed 1.For adaptive wall-based attachment ventilation,the contaminant removal efficiency is an exponential function of the ACH.Compared with the ceiling air supply mode or upper sidewall air supply mode,adaptive wall-based attachment ventilation achieves a similar thermal comfort level(predicted mean vote(PMV)of0.1–0.4;draught rate of 2.5%–6.7%)and a similar performance in removing contaminants,but has a lower ACH and uses less energy.
基金supported by the National Research Foundation of Korea through WCU(R31-2009-000-10083-0)
文摘The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.
基金supported by National Science Foundation of China(51477091)。
文摘The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.
基金Project(2006BAJ01A05) supported by National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.
基金supported by the Russian Foundation for Basic Research(RFBR),grant 15-05-00089
文摘The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space svstems and technologiesi.