Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the ...Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.展开更多
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive leve...AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching(control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before(pre) and after(post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension.RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups(P > 0.05). Subsequently, although the control group did notexhibit significant changes in quadriceps and hamstring muscle strength(P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension(P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention(P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.展开更多
文摘Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.
文摘AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching(control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before(pre) and after(post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension.RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups(P > 0.05). Subsequently, although the control group did notexhibit significant changes in quadriceps and hamstring muscle strength(P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension(P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention(P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.