A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar de...A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.展开更多
In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the o...In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.展开更多
In this paper we obtained the asymptotic formula of the orthogonal rational function on the unit circle with respect to the weight function μ(z) with preasigned poles, which are in the exterior of the unit disk.
We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder a...We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.展开更多
In this paper, we investigate the inherent relationship between two types of rational Bezier surfaces. We present a conversion formula for rational Bezier surfaces from triangular patches to rectangular patches with s...In this paper, we investigate the inherent relationship between two types of rational Bezier surfaces. We present a conversion formula for rational Bezier surfaces from triangular patches to rectangular patches with straight forward geometric interpretations, an inverse process of such conversion is also considered.展开更多
General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation a...General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.展开更多
文摘A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.
文摘In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.
文摘In this paper we obtained the asymptotic formula of the orthogonal rational function on the unit circle with respect to the weight function μ(z) with preasigned poles, which are in the exterior of the unit disk.
文摘We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.
文摘In this paper, we investigate the inherent relationship between two types of rational Bezier surfaces. We present a conversion formula for rational Bezier surfaces from triangular patches to rectangular patches with straight forward geometric interpretations, an inverse process of such conversion is also considered.
基金supported by the grant of Key Scientific Research Foundation of Education Department of Anhui Province, No. KJ2014A210
文摘General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.