In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfe...In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfect combination of the analytic methods and numeric methods, has been presented. This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures. What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
In multibody system dynamics, the absolute nodal coordinate formulation (ANCF) uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies th...In multibody system dynamics, the absolute nodal coordinate formulation (ANCF) uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation, the rational absolute nodal coordinate formulation (RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.展开更多
文摘In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfect combination of the analytic methods and numeric methods, has been presented. This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures. What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘In multibody system dynamics, the absolute nodal coordinate formulation (ANCF) uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation, the rational absolute nodal coordinate formulation (RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.