Formulation of traditional hard porcelain generally requires 50% kaolin, 25% silica and 25% feldspar. Four porcelains formulation using the casting method, were prepared with different percentages of kaolinitic clay, ...Formulation of traditional hard porcelain generally requires 50% kaolin, 25% silica and 25% feldspar. Four porcelains formulation using the casting method, were prepared with different percentages of kaolinitic clay, sand and pegmatite referenced respectively NONG, SAB and PEG. The physico-chemical, mechanical and mineralogical characteristics were evaluated on specimens formulated and sintered at different temperatures from 1200<span style="white-space:normal;">˚</span>C to 1300<span style="white-space:normal;"><span style="white-space:normal;">˚</span></span>C. X-ray diffraction has revealed the presence of mullite and quartz as essentially crystalline phases. The specimen formulated with 55% NONG, 25% PEG and 20% SAB and sintered at 1240<span style="white-space:normal;"><span style="white-space:normal;">˚</span></span>C gives better performance (water absorption: 0.17%, density: 2.42, open porosity: 0.42% and flexural strength: 53.54 MPa).展开更多
The Siirt Madenköy massive sulfide ore deposit has been in operation since 2005. With its approx. 39 Mt reserves (2.40% Cu), it represents the largest Cu deposit and the largest mining operation in the countr...The Siirt Madenköy massive sulfide ore deposit has been in operation since 2005. With its approx. 39 Mt reserves (2.40% Cu), it represents the largest Cu deposit and the largest mining operation in the country (1.5 Mt ore/year). The thickness of the adjacent rocks is composed of olivine-pyroxenite basalts pillow lava, which is spilite, interchangeable ore lenses of chalcopyrite and pyrite is about 170 m and reaches a depth of 350 m. The mid-Eocene aged porphyritic, strongly altered spilites are locally interspersed with diabase and covered by conglomerates. The ores appear massive, stock work and disseminated. Main ore minerals are idiomorphic pyrite, cataclastic chalcopyrite and fine-grained magnetite. The geochemical composition of the Cu ores of the Siirt-Madenköy deposit shows in places high levels of Cu, Fe and S, as important trace elements, As, Ba, Co and Ti are listed. In relation to Clarke values, Se, Bi, Cu, Mo and Co are strongly enriched, while Na, K and Ca as well as their coherent trace elements Rb, Sr and Cd are depleted due to hydrothermal alteration. The elemental distribution is characterized by log-normal distribution, proportionality effect, high Cu/Ni ratio and significantly positive correlation between the element pairs MgO-Ni, Cr-Ni and Co/FeO-Co. The dependence of Cu and SO3 contents and Cu/FeO, SO3/FeO ratios are to be interpreted as an indication of the common origin of Cu, Fe and S. In general, Cu, Zn, Pb and S content decrease with depth, whereas those of Fe3O4 increase. The variograms of the ore distributions are characterized by hole effect, trend and zonal anisotropy, which reflect alternation of ores with host rocks and changes in elemental contents. The Siirt Madenköy deposit is attributable to Cu and Zn ratios of the Cu class of ophiolitic massive sulfide deposits. Due to the very high Cu/Pb and Cu/Zn ratios, it can be described as an analogous deposit of the mid oceanic ridge, for example comparable to ores of Galapagos Ridge. The Siirt Madenköy deposit is considered to be a syngenetic volcanogenic-exhalative massive sulfide ore deposit based on the results of the study. It belongs to the “Cyprus deposit type”. Similar deposits are Küre and Ergani-Maden in Turkey, Ermioni in Greece and Outukumpu in Finland.展开更多
文摘Formulation of traditional hard porcelain generally requires 50% kaolin, 25% silica and 25% feldspar. Four porcelains formulation using the casting method, were prepared with different percentages of kaolinitic clay, sand and pegmatite referenced respectively NONG, SAB and PEG. The physico-chemical, mechanical and mineralogical characteristics were evaluated on specimens formulated and sintered at different temperatures from 1200<span style="white-space:normal;">˚</span>C to 1300<span style="white-space:normal;"><span style="white-space:normal;">˚</span></span>C. X-ray diffraction has revealed the presence of mullite and quartz as essentially crystalline phases. The specimen formulated with 55% NONG, 25% PEG and 20% SAB and sintered at 1240<span style="white-space:normal;"><span style="white-space:normal;">˚</span></span>C gives better performance (water absorption: 0.17%, density: 2.42, open porosity: 0.42% and flexural strength: 53.54 MPa).
文摘The Siirt Madenköy massive sulfide ore deposit has been in operation since 2005. With its approx. 39 Mt reserves (2.40% Cu), it represents the largest Cu deposit and the largest mining operation in the country (1.5 Mt ore/year). The thickness of the adjacent rocks is composed of olivine-pyroxenite basalts pillow lava, which is spilite, interchangeable ore lenses of chalcopyrite and pyrite is about 170 m and reaches a depth of 350 m. The mid-Eocene aged porphyritic, strongly altered spilites are locally interspersed with diabase and covered by conglomerates. The ores appear massive, stock work and disseminated. Main ore minerals are idiomorphic pyrite, cataclastic chalcopyrite and fine-grained magnetite. The geochemical composition of the Cu ores of the Siirt-Madenköy deposit shows in places high levels of Cu, Fe and S, as important trace elements, As, Ba, Co and Ti are listed. In relation to Clarke values, Se, Bi, Cu, Mo and Co are strongly enriched, while Na, K and Ca as well as their coherent trace elements Rb, Sr and Cd are depleted due to hydrothermal alteration. The elemental distribution is characterized by log-normal distribution, proportionality effect, high Cu/Ni ratio and significantly positive correlation between the element pairs MgO-Ni, Cr-Ni and Co/FeO-Co. The dependence of Cu and SO3 contents and Cu/FeO, SO3/FeO ratios are to be interpreted as an indication of the common origin of Cu, Fe and S. In general, Cu, Zn, Pb and S content decrease with depth, whereas those of Fe3O4 increase. The variograms of the ore distributions are characterized by hole effect, trend and zonal anisotropy, which reflect alternation of ores with host rocks and changes in elemental contents. The Siirt Madenköy deposit is attributable to Cu and Zn ratios of the Cu class of ophiolitic massive sulfide deposits. Due to the very high Cu/Pb and Cu/Zn ratios, it can be described as an analogous deposit of the mid oceanic ridge, for example comparable to ores of Galapagos Ridge. The Siirt Madenköy deposit is considered to be a syngenetic volcanogenic-exhalative massive sulfide ore deposit based on the results of the study. It belongs to the “Cyprus deposit type”. Similar deposits are Küre and Ergani-Maden in Turkey, Ermioni in Greece and Outukumpu in Finland.