This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7...This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7°C and 20°C, the velocity pulsation profiles and the mean velocity profiles of the vertical section in the middle of the cubic cavity were simulated, respectively. And they are consistent with the experiment results. Furthermore, the mean velocity field of the vertical cross-section in the middle of the cavity was calculated. Structures of the mean velocity field in the two cases are similar. A counterclockwise large vortex is found to occupy the cavity, and there are two small clockwise vortices in the lower left and upper right corners, and the mean velocity fields at two different temperature differences are consistent with the experimental results. The two-dimensional instantaneous temperature field and mean temperature field with different cross-sections in the z-direction, as well as the three-dimensional instantaneous isothermal surface structure, indicate that the large-scale circulation motion within the cubic cavity is moving diagonally. In addition, the structure of the mean streamline also illustrates this viewpoint. For the reverse vortex formed at two corners in the mean streamline structure, we used the Q criterion to identify and obtain two vortex structures similar to boomerangs. The basic turbulent structure in RB thermal convection includes the rising and falling plumes generated by buoyancy effects.展开更多
Rayleigh-Benard convection driven by the temperature difference between top and bottom surfaces of a T-shaped cavity with two different boundary conditions is studied numerically. Steady or unsteady cellular flow stru...Rayleigh-Benard convection driven by the temperature difference between top and bottom surfaces of a T-shaped cavity with two different boundary conditions is studied numerically. Steady or unsteady cellular flow structures and temperature patterns are illustrated along with the evolution of heat transfer rates (Nusselt number, Nu). The cavity is filled with fluids of various Pr (Prandtl number), including 0.024, 0.71, 6, and 450. The effect of Pr and Ra (Rayleigh number) on the flow regime and heat transfer is established, while comparing the results also with those of the square cavity.展开更多
We are considering two initial-boundary value problems for Rayleigh-Benard convection in Oberbeck-Boussinesq approximation for incompressible fluid in 3D-rectangular domain with 4:4:1 geometric ratio with periodicity ...We are considering two initial-boundary value problems for Rayleigh-Benard convection in Oberbeck-Boussinesq approximation for incompressible fluid in 3D-rectangular domain with 4:4:1 geometric ratio with periodicity in two directions and cubic domain with 1:1:1 ratio and zero velocity and temperature gradient boundary conditions. For this purpose, we use two numerical method: one is a Pseudo-Spectral-Galerkin method with trigonometric-Chebyshev polynomials and the other is finite element/volume method with WENO interpolation for advection term. Numerical methods are presented shortly and are benchmarked against known DNS data and against one another (for quasi-periodic domain problem). Then we perform stability analysis using analytical expression for main stationary solutions and eigenvalue numerical analysis by applying Implicitly Restarted Arnoldi (IRA) method. The IRA is used to perform linear stability analysis, find bifurcations of stationary points and analyze eigenvalues of monodromy matrices. Thus characteristic exponents of the system for time periodic solutions (limited cycles of various periods and resonance invariant tori) are computed. We show, numerically, the existence of multistable rotes to chaos through chaotic fractal attractors, full Feigenbaum-Sharkovski cascades and multidimensional torus attractors (Landau-Hopf scenario). The existence of these attractors is shown through analysis of phase subspaces projections, Poincare sections and eigenvalue analysis of numerically computed DNS data. These attractors burst into chaos with the increase of Rayleigh number either through resonance and phase-locking or through emergence of singular chaotic attractors.展开更多
Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomen...Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.展开更多
A detailed comparative numerical study between the two-dimensional(2 D) and quasi-two-dimensional(quasi-2 D)turbulent Rayleigh–B'enard(RB) convection on flow state, heat transfer, and thermal dissipation rate...A detailed comparative numerical study between the two-dimensional(2 D) and quasi-two-dimensional(quasi-2 D)turbulent Rayleigh–B'enard(RB) convection on flow state, heat transfer, and thermal dissipation rate(TDR) is made. The Rayleigh number(Ra) in our simulations ranges up to 5×10^10 and Prandtl number(Pr) is fixed to be 0.7. Our simulations are conducted on the Tianhe-2 supercomputer. We use an in-house code with high parallelization efficiency, based on the extended PDM–DNS scheme. The comparison shows that after a certain Ra, plumes with round shape, which is called the "temperature islands", develop and gradually dominate the flow field in the 2 D case. On the other hand, in quasi-2 D cases, plumes remain mushroom-like. This difference in morphology becomes more significant as Ra increases, as with the motion of plumes near the top and bottom plates. The exponents of the power-law relation between the Nusselt number(Nu) and Ra are 0.3 for both two cases, and the fitting pre-factors are 0.099 and 0.133 for 2 D and quasi-2 D respectively,indicating a clear difference in magnitude of the heat transfer rate between two cases. To understand this difference in the magnitude of Nu, we compare the vertical profile of the horizontally averaged TDR for both two cases. It is found that the profiles of both cases are nearly the same in the bulk, but they vary near boundaries. Comparing the bifurcation height zb with the thermal boundary layer thickness dq, it shows that zb 〈 δθ(3 D) 〈 δθ(2 D) and all three heights obey a universal power-law relation z ~Ra^-0.30. In order to quantify the difference further, we separate the domain by zb, i.e., define the area between two zb(near top and bottom plates respectively) as the "mid region" and the rest as the "side region", and integrate TDR in corresponding regions. By comparing the integral it is found that most of the difference in TDR between two cases, which is connected to the heat transfer rate, occurs within the thermal boundary layers. We also compare the ratio of contributions to total heat transfer in BL–bulk separation and side–mid separation.展开更多
The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a comb...The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.展开更多
The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing par...The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing particle image velocimetry. Obvious turbulent vortexes that were induced by Rayleigh convection appeared in the bulk liquid,and its statistic features indicated that Rayleigh convection became more intense with the increase of Ra number and ReGnumber. Mass transfer coefficient was measured and the computed enhancement factor indicated that Rayleigh convection could promote the surface renewal of the liquid phase and intensify the interfacial mass transfer significantly. A method was proposed for the prediction of mass transfer coefficient based on the measured velocity vector, and the predicted mass transfer coefficients are in reasonable agreement with the experimental results.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfe...CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfer rate will be significantly enhanced.Therefore,it is necessary to explore the mass transfer enhancement mechanism further and develop a penetration/surface divergence hybrid mass transfer model.In this study,we conduct research on the process of CO_(2) absorption into ethanol with RC.Firstly,we use a multi-relaxation time lattice Boltzmann method to simulate the absorption process and obtain the flow and concentration fields.And we also verify the reliability of the numerical simulation results by comparing with the experimental results.Then,we analyze the characteristics of non-uniform flow and concentration fields in RC.Moreover,we divide the near-interface region into diffusion-dominated and convection-dominated mass transfer zones by checking whether the horizontal average velocity is greater than 1.0×10^(-4) m·s^(-1).Furthermore,based on the differences in mass transfer mechanisms of the aforementioned two zones,we propose a penetration/surface divergence hybrid model to predict the instantaneous mass transfer coefficient.The prediction results demonstrate that the hybrid model can precisely predict the instantaneous mass transfer coefficient of the entire CO_(2) absorption process.Our proposed hybrid model provides a promising way to deal with the complex mass transfer problems with non-uniform flow and concentration fields.展开更多
In order to enhance photocatalytic water splitting rates with Pt/TiO2 powder, sufficient agitation of the biphasic medium is required to switch surficial reactions to volumetric reactions. Additionally, agitation is c...In order to enhance photocatalytic water splitting rates with Pt/TiO2 powder, sufficient agitation of the biphasic medium is required to switch surficial reactions to volumetric reactions. Additionally, agitation is conducive to higher diffusion rates of the generated hydrogen and co-produced oxygen, hindering their ability to re-couple to water on Pt loaded to TiO2 powder. In order to create agitation without consuming any electricity, a novel technique utilizing Rayleigh convection was applied, and its ability to enhance photocatalytic water splitting rates was evaluated. Higher Rayleigh convective flow rates resulted in higher photocatalytic water splitting rates. Utilization of Rayleigh convection approximately doubled the photocatalytic water splitting rates, despite relatively low convective flow velocities (obtained through simple thermo-hydrodynamic simulations). The rate enhancement achieved through Rayleigh convection is a result of its ability to disperse the ultrafine Pt/TiO2 particles throughout the whole medium, leading to volumetric reactions.展开更多
Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up t...Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up to any order are given and the convergence rates O(εm+1/2)and the optimal convergence rates O(εm+1) are obtained respectively. This improves the result of J.G. SHI.展开更多
Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( PO...Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( POD) is used to analyze the flow and temperature characteristics from POD energy spectrum and eigenmodes. The results show that the energy spectrum converges fast and the scale of vortex structures captured by eigenmodes becomes smaller as the eigenmode order increases. Meanwhile,a low-dimensional model( LDM) for RB convection is derived based on POD eigenmodes used as a basis of Galerkin project of Navier-Stokes-Boussinesq equations. LDM is built based on different number of eigenmodes and through the analysis of phase portraits,streamline and isothermal predicted by LDM,it is suggested that the error between LDM and DNS is still large.展开更多
Wavelet transform is used to analyze the scaling rule of temperature data (passive scalar) in Rayleigh Bénard convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can f...Wavelet transform is used to analyze the scaling rule of temperature data (passive scalar) in Rayleigh Bénard convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).展开更多
Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity,...Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity, presented first by Benzi et al., to study the scaling exponent of temperature data. The obtained results show that the inertial range is much wider than that one determined directly from the conventional structure function, and find the obtained scaling exponent agrees well with the one obtained from the temperature data in an experiment of wind tunnel. The second one was that, by extending the formula which was proposed by A. Arneodo et al. for extracting the scaling exponent ζ(q) of velocity data to temperature data, a newly defined formula which is also based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data was proposed. The obtained results demonstrate that by using the method which is named as WTMM (wavelet transform maximum modulus) ξ(q) correctly can be extracted.展开更多
The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studi...The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.展开更多
In this paper the influence of an impressed Coriolis force field on the configuration of a turbulent Rayleigh-Bénard convection problem is investigated in an experimental and numerical study. The main purpose of ...In this paper the influence of an impressed Coriolis force field on the configuration of a turbulent Rayleigh-Bénard convection problem is investigated in an experimental and numerical study. The main purpose of both studies lie on the analysis of a possible stabilising effect of a Coriolis acceleration on the turbulent unsteady structures inside the fluid. The relative Coriolis acceleration which is caused in the atmosphere by the earth rotation is realised in the experimental study by a uniform-rotational movement of the setup in a large-scale centrifuge under hyper-gravity. The same conditions as in the atmosphere in the beginning of a twister or hurricane should be realised in the experiment. The investigated Rayleigh numbers lie between 2.33 × 106 ≤ Ra ≤ 4.32 × 107.展开更多
文摘This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7°C and 20°C, the velocity pulsation profiles and the mean velocity profiles of the vertical section in the middle of the cubic cavity were simulated, respectively. And they are consistent with the experiment results. Furthermore, the mean velocity field of the vertical cross-section in the middle of the cavity was calculated. Structures of the mean velocity field in the two cases are similar. A counterclockwise large vortex is found to occupy the cavity, and there are two small clockwise vortices in the lower left and upper right corners, and the mean velocity fields at two different temperature differences are consistent with the experimental results. The two-dimensional instantaneous temperature field and mean temperature field with different cross-sections in the z-direction, as well as the three-dimensional instantaneous isothermal surface structure, indicate that the large-scale circulation motion within the cubic cavity is moving diagonally. In addition, the structure of the mean streamline also illustrates this viewpoint. For the reverse vortex formed at two corners in the mean streamline structure, we used the Q criterion to identify and obtain two vortex structures similar to boomerangs. The basic turbulent structure in RB thermal convection includes the rising and falling plumes generated by buoyancy effects.
文摘Rayleigh-Benard convection driven by the temperature difference between top and bottom surfaces of a T-shaped cavity with two different boundary conditions is studied numerically. Steady or unsteady cellular flow structures and temperature patterns are illustrated along with the evolution of heat transfer rates (Nusselt number, Nu). The cavity is filled with fluids of various Pr (Prandtl number), including 0.024, 0.71, 6, and 450. The effect of Pr and Ra (Rayleigh number) on the flow regime and heat transfer is established, while comparing the results also with those of the square cavity.
文摘We are considering two initial-boundary value problems for Rayleigh-Benard convection in Oberbeck-Boussinesq approximation for incompressible fluid in 3D-rectangular domain with 4:4:1 geometric ratio with periodicity in two directions and cubic domain with 1:1:1 ratio and zero velocity and temperature gradient boundary conditions. For this purpose, we use two numerical method: one is a Pseudo-Spectral-Galerkin method with trigonometric-Chebyshev polynomials and the other is finite element/volume method with WENO interpolation for advection term. Numerical methods are presented shortly and are benchmarked against known DNS data and against one another (for quasi-periodic domain problem). Then we perform stability analysis using analytical expression for main stationary solutions and eigenvalue numerical analysis by applying Implicitly Restarted Arnoldi (IRA) method. The IRA is used to perform linear stability analysis, find bifurcations of stationary points and analyze eigenvalues of monodromy matrices. Thus characteristic exponents of the system for time periodic solutions (limited cycles of various periods and resonance invariant tori) are computed. We show, numerically, the existence of multistable rotes to chaos through chaotic fractal attractors, full Feigenbaum-Sharkovski cascades and multidimensional torus attractors (Landau-Hopf scenario). The existence of these attractors is shown through analysis of phase subspaces projections, Poincare sections and eigenvalue analysis of numerically computed DNS data. These attractors burst into chaos with the increase of Rayleigh number either through resonance and phase-locking or through emergence of singular chaotic attractors.
基金Supported by the National Natural Science Foundation of China (20736005).
文摘Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11772362 and 11452002)the Special Scientific Research Fund for Super Computing in the Joint Fund of the National Natural Science Foundation of Chinathe People’s Government of Guangdong Province(Phase Ⅱ,Grant No.nsfc2015 570)
文摘A detailed comparative numerical study between the two-dimensional(2 D) and quasi-two-dimensional(quasi-2 D)turbulent Rayleigh–B'enard(RB) convection on flow state, heat transfer, and thermal dissipation rate(TDR) is made. The Rayleigh number(Ra) in our simulations ranges up to 5×10^10 and Prandtl number(Pr) is fixed to be 0.7. Our simulations are conducted on the Tianhe-2 supercomputer. We use an in-house code with high parallelization efficiency, based on the extended PDM–DNS scheme. The comparison shows that after a certain Ra, plumes with round shape, which is called the "temperature islands", develop and gradually dominate the flow field in the 2 D case. On the other hand, in quasi-2 D cases, plumes remain mushroom-like. This difference in morphology becomes more significant as Ra increases, as with the motion of plumes near the top and bottom plates. The exponents of the power-law relation between the Nusselt number(Nu) and Ra are 0.3 for both two cases, and the fitting pre-factors are 0.099 and 0.133 for 2 D and quasi-2 D respectively,indicating a clear difference in magnitude of the heat transfer rate between two cases. To understand this difference in the magnitude of Nu, we compare the vertical profile of the horizontally averaged TDR for both two cases. It is found that the profiles of both cases are nearly the same in the bulk, but they vary near boundaries. Comparing the bifurcation height zb with the thermal boundary layer thickness dq, it shows that zb 〈 δθ(3 D) 〈 δθ(2 D) and all three heights obey a universal power-law relation z ~Ra^-0.30. In order to quantify the difference further, we separate the domain by zb, i.e., define the area between two zb(near top and bottom plates respectively) as the "mid region" and the rest as the "side region", and integrate TDR in corresponding regions. By comparing the integral it is found that most of the difference in TDR between two cases, which is connected to the heat transfer rate, occurs within the thermal boundary layers. We also compare the ratio of contributions to total heat transfer in BL–bulk separation and side–mid separation.
基金supported in part by RGC of Hong Kong SAR (HKUST-605013)
文摘The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing particle image velocimetry. Obvious turbulent vortexes that were induced by Rayleigh convection appeared in the bulk liquid,and its statistic features indicated that Rayleigh convection became more intense with the increase of Ra number and ReGnumber. Mass transfer coefficient was measured and the computed enhancement factor indicated that Rayleigh convection could promote the surface renewal of the liquid phase and intensify the interfacial mass transfer significantly. A method was proposed for the prediction of mass transfer coefficient based on the measured velocity vector, and the predicted mass transfer coefficients are in reasonable agreement with the experimental results.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
基金the financial support of the National Natural Science Foundation of China(21706182)。
文摘CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfer rate will be significantly enhanced.Therefore,it is necessary to explore the mass transfer enhancement mechanism further and develop a penetration/surface divergence hybrid mass transfer model.In this study,we conduct research on the process of CO_(2) absorption into ethanol with RC.Firstly,we use a multi-relaxation time lattice Boltzmann method to simulate the absorption process and obtain the flow and concentration fields.And we also verify the reliability of the numerical simulation results by comparing with the experimental results.Then,we analyze the characteristics of non-uniform flow and concentration fields in RC.Moreover,we divide the near-interface region into diffusion-dominated and convection-dominated mass transfer zones by checking whether the horizontal average velocity is greater than 1.0×10^(-4) m·s^(-1).Furthermore,based on the differences in mass transfer mechanisms of the aforementioned two zones,we propose a penetration/surface divergence hybrid model to predict the instantaneous mass transfer coefficient.The prediction results demonstrate that the hybrid model can precisely predict the instantaneous mass transfer coefficient of the entire CO_(2) absorption process.Our proposed hybrid model provides a promising way to deal with the complex mass transfer problems with non-uniform flow and concentration fields.
文摘In order to enhance photocatalytic water splitting rates with Pt/TiO2 powder, sufficient agitation of the biphasic medium is required to switch surficial reactions to volumetric reactions. Additionally, agitation is conducive to higher diffusion rates of the generated hydrogen and co-produced oxygen, hindering their ability to re-couple to water on Pt loaded to TiO2 powder. In order to create agitation without consuming any electricity, a novel technique utilizing Rayleigh convection was applied, and its ability to enhance photocatalytic water splitting rates was evaluated. Higher Rayleigh convective flow rates resulted in higher photocatalytic water splitting rates. Utilization of Rayleigh convection approximately doubled the photocatalytic water splitting rates, despite relatively low convective flow velocities (obtained through simple thermo-hydrodynamic simulations). The rate enhancement achieved through Rayleigh convection is a result of its ability to disperse the ultrafine Pt/TiO2 particles throughout the whole medium, leading to volumetric reactions.
基金Supported by the Natural Science Foundation of Henan Province(092300410150)the Key Youth Teacher Foundation of Department Education of Henan Province(2011GGJS-210)the Key Youth Teacher Foundation of Huanghuai University
文摘Benard convection is studied by the asymptotic expansion methods of singular perturbation theory and the classical energy methods. For ill-prepared initial data, an exact approximating 1 solution with expansions up to any order are given and the convergence rates O(εm+1/2)and the optimal convergence rates O(εm+1) are obtained respectively. This improves the result of J.G. SHI.
基金Sponsored by the National Natural Science Foundation of China(Grant o.51576051)
文摘Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( POD) is used to analyze the flow and temperature characteristics from POD energy spectrum and eigenmodes. The results show that the energy spectrum converges fast and the scale of vortex structures captured by eigenmodes becomes smaller as the eigenmode order increases. Meanwhile,a low-dimensional model( LDM) for RB convection is derived based on POD eigenmodes used as a basis of Galerkin project of Navier-Stokes-Boussinesq equations. LDM is built based on different number of eigenmodes and through the analysis of phase portraits,streamline and isothermal predicted by LDM,it is suggested that the error between LDM and DNS is still large.
文摘Wavelet transform is used to analyze the scaling rule of temperature data (passive scalar) in Rayleigh Bénard convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).
文摘Wavetet transform was used to analyze the scaling law of temperature data (passive scalar) in Rayleigh-Bénard convection flow from two aspects. The first one was to utilize the method of extended self similarity, presented first by Benzi et al., to study the scaling exponent of temperature data. The obtained results show that the inertial range is much wider than that one determined directly from the conventional structure function, and find the obtained scaling exponent agrees well with the one obtained from the temperature data in an experiment of wind tunnel. The second one was that, by extending the formula which was proposed by A. Arneodo et al. for extracting the scaling exponent ζ(q) of velocity data to temperature data, a newly defined formula which is also based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data was proposed. The obtained results demonstrate that by using the method which is named as WTMM (wavelet transform maximum modulus) ξ(q) correctly can be extracted.
文摘The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.
文摘In this paper the influence of an impressed Coriolis force field on the configuration of a turbulent Rayleigh-Bénard convection problem is investigated in an experimental and numerical study. The main purpose of both studies lie on the analysis of a possible stabilising effect of a Coriolis acceleration on the turbulent unsteady structures inside the fluid. The relative Coriolis acceleration which is caused in the atmosphere by the earth rotation is realised in the experimental study by a uniform-rotational movement of the setup in a large-scale centrifuge under hyper-gravity. The same conditions as in the atmosphere in the beginning of a twister or hurricane should be realised in the experiment. The investigated Rayleigh numbers lie between 2.33 × 106 ≤ Ra ≤ 4.32 × 107.