The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic ma...The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.展开更多
The analogy between eigenvalues and singular values has many faces. The current review brings together several examples of this analogy. One example regards the similarity between Symmetric Rayleigh Quotients and Rect...The analogy between eigenvalues and singular values has many faces. The current review brings together several examples of this analogy. One example regards the similarity between Symmetric Rayleigh Quotients and Rectangular Rayleigh Quotients. Many useful properties of eigenvalues stem are from the Courant-Fischer minimax theorem, from Weyl’s theorem, and their corollaries. Another aspect regards “rectangular” versions of these theorems. Comparing the properties of Rayleigh Quotient matrices with those of Orthogonal Quotient matrices illuminates the subject in a new light. The Orthogonal Quotients Equality is a recent result that converts Eckart-Young’s minimum norm problem into an equivalent maximum norm problem. This exposes a surprising link between the Eckart-Young theorem and Ky Fan’s maximum principle. We see that the two theorems reflect two sides of the same coin: there exists a more general maximum principle from which both theorems are easily derived. Ky Fan has used his extremum principle (on traces of matrices) to derive analog results on determinants of positive definite Rayleigh Quotients matrices. The new extremum principle extends these results to Rectangular Quotients matrices. Bringing all these topics under one roof provides new insight into the fascinating relations between eigenvalues and singular values.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11202136,11372195,11502147,and 11602146)
文摘The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.
文摘The analogy between eigenvalues and singular values has many faces. The current review brings together several examples of this analogy. One example regards the similarity between Symmetric Rayleigh Quotients and Rectangular Rayleigh Quotients. Many useful properties of eigenvalues stem are from the Courant-Fischer minimax theorem, from Weyl’s theorem, and their corollaries. Another aspect regards “rectangular” versions of these theorems. Comparing the properties of Rayleigh Quotient matrices with those of Orthogonal Quotient matrices illuminates the subject in a new light. The Orthogonal Quotients Equality is a recent result that converts Eckart-Young’s minimum norm problem into an equivalent maximum norm problem. This exposes a surprising link between the Eckart-Young theorem and Ky Fan’s maximum principle. We see that the two theorems reflect two sides of the same coin: there exists a more general maximum principle from which both theorems are easily derived. Ky Fan has used his extremum principle (on traces of matrices) to derive analog results on determinants of positive definite Rayleigh Quotients matrices. The new extremum principle extends these results to Rectangular Quotients matrices. Bringing all these topics under one roof provides new insight into the fascinating relations between eigenvalues and singular values.