This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switch...In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switching. Based on the Lyapunov-Razumikhin methods, some sufficient conditions are derived to check the stability of impulsive stochastic functional differential systems with Markovian switching. One numerical example is provided to demonstrate the effectiveness of the results.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some suffi...This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some sufficient conditions are derived to check the stability of stochastic switching nonlinear systems with delay. One numerical example is provided to demonstrate the effectiveness of the results.展开更多
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with...Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infini...The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold ...In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.展开更多
Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opport...Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.展开更多
The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTE...The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.展开更多
Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuz...Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuzzy set are studied firstly, and then the cut set of interval fuzzy set is proposed. Moreover, the decomposition theo- rem, the representation theorem and the extension theorem of interval fuzzy set are presented. Finally, examples are given to demonstrate that the classical fuzzy set is a special case of interval fuzzy set and interval fuzzy set is an effective expansion of the classical fuzzy set.展开更多
In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
Based on the Aki-Richards approximate equations for reflection coefficients and Bayes theorem, we developed an inversion method to estimate P- and S-wave velocity contrasts and density contrast from combined PP and PS...Based on the Aki-Richards approximate equations for reflection coefficients and Bayes theorem, we developed an inversion method to estimate P- and S-wave velocity contrasts and density contrast from combined PP and PS data. This method assumes that the parameters satisfy a normal distribution and introduces the covariance matrix to describe the degree of correlation between the parameters and thus to improve the inversion stability. Then, we suppose that the parameter sequence is subject to the Cauchy distribution and employs another matrix Q to describe the parameter sequence sparseness to improve the inversion result resolution. Tests on both synthetic and real multi-component data prove that this method is valid, efficient, more stable, and more accurate compared to methods using PP data only.展开更多
Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were appli...Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.展开更多
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
基金Sponsored by HUST Foundation(0125011017)the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金Sponsored by HUST Foundation(0125011017) the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
文摘In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switching. Based on the Lyapunov-Razumikhin methods, some sufficient conditions are derived to check the stability of impulsive stochastic functional differential systems with Markovian switching. One numerical example is provided to demonstrate the effectiveness of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
文摘This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some sufficient conditions are derived to check the stability of stochastic switching nonlinear systems with delay. One numerical example is provided to demonstrate the effectiveness of the results.
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
文摘The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.
基金Henan Province 2022 Teacher Education Curriculum Reform Research Project:Research on Improving the Teaching Practice Ability of Mathematics Normal University Students under the OBE Concept(Project number:2022-JSJYZD-009)A Study on the Measurement and Development of Mathematics Core Literacy for Secondary School Students,Doctoral Research Initiation Fee of Henan Normal University(Project number:20230234)Henan Normal University Graduate Quality Course Program,Mathematical Planning I(Project number:YJS2022KC02)。
文摘Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.
文摘The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.
基金Supported by the Aeronautical Science Foundation(20115868009)the Open Project Program of Key Laboratory of Intelligent Computing&Information Processing of Ministry of Education in Xiangtan University(2011ICIP04)+1 种基金the Program of 211 Innovation Engineering on Information in Xiamen University(2009-2011)the College Students Innovation Training Plan of Xianmen University~~
文摘Although the concept of interval fuzzy set and its properties have been defined, its three theorems and their effectiveness are not proved. Therefore, the knowledge presentation and its operation rules of interval fuzzy set are studied firstly, and then the cut set of interval fuzzy set is proposed. Moreover, the decomposition theo- rem, the representation theorem and the extension theorem of interval fuzzy set are presented. Finally, examples are given to demonstrate that the classical fuzzy set is a special case of interval fuzzy set and interval fuzzy set is an effective expansion of the classical fuzzy set.
文摘In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
基金supported by the China Important National Science & Technology Specific Projects (Grant No. 2011ZX05019-008)the National Natural Science Foundation of China (Grant No. 40839901)
文摘Based on the Aki-Richards approximate equations for reflection coefficients and Bayes theorem, we developed an inversion method to estimate P- and S-wave velocity contrasts and density contrast from combined PP and PS data. This method assumes that the parameters satisfy a normal distribution and introduces the covariance matrix to describe the degree of correlation between the parameters and thus to improve the inversion stability. Then, we suppose that the parameter sequence is subject to the Cauchy distribution and employs another matrix Q to describe the parameter sequence sparseness to improve the inversion result resolution. Tests on both synthetic and real multi-component data prove that this method is valid, efficient, more stable, and more accurate compared to methods using PP data only.
文摘Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.