This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from ...This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.展开更多
基金National Basic Research Program of China(2012CB417202)National Natural Science Foundation of China(41175045,91337215,Ul 133603)Special Fund for Meteorological Research in the Public Interest(GYHY201206042)
文摘This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.