The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization ...The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.展开更多
We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depressio...We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.展开更多
The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. ...The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ^(187)Os/^(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ^(187)Os/^(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ^(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10^(-4) Ra to 2.5 × 10^(-2) Ra(Ra = 1.4 × 10^(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10^(-2) to 15.39×10^(-2), and ^(40)Ar/^(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.展开更多
On the southwestern margin of the Yangtze Block, the Dongchuan Group consists of slightly metamorphosed sedimentary rocks, including silty slate, argillaceous slate, clayey slate, arkose, dolomite, and minor volcanic ...On the southwestern margin of the Yangtze Block, the Dongchuan Group consists of slightly metamorphosed sedimentary rocks, including silty slate, argillaceous slate, clayey slate, arkose, dolomite, and minor volcanic rocks. To date, it is still a controversy over the depositional age and stratigraphic sequence of the Dongchuan Group. In this study, we analyzed five samples of meta-sedimentary rocks and one sample of meta-tuff from the Yinmin, Luoxue and Etouchang Formations of the Dongchuan Group in the Yuxi region for detrital zircon U-Pb ages and Lu-Hf isotope. The detrital zircon ages of the meta-sediments vary from 3073 to 1703 Ma, mainly clustered at three periods, from 1889 to 1840, 2490 to 2008 and 2878 to 2844 Ma. The youngest age peak of all the samples is ~1859 Ma, with the εHf(t) values of the zircons ranging from-20.3 to +4.3 and more than 90% being negative, indicating that the Paleoproterozoic crustal accretion on the southwestern margin of the Yangtze Block was dominated by reworking of the ancient crustal materials involved in the assembly and breakup of the Columbia supercontinent. Another important age range is between 2490 Ma and 2008 Ma, with εHf(t) values from-14.7 to +8.9 and 70% of them are negative, suggesting that the magmatism in the source area was also dominated by reworking and recycling of the ancient crustal materials, with minor juvenile mantle substances added. The detritus was probably derived from the Paleoproterozoic crystalline basement in the southern Yuxi region. The oldest peak age is ~2847 Ma and the εHf(t) values are from-7.7 to +7.0 with 50% of both positive and negative values, demonstrating a possible ~2.85 Ga ancient continental nucleus on the southwestern margin of the Yangtze Block and substantial growth in juvenile crust materials during this period. Besides, the weighted average age of the zircons from the meta-tuff of the Etouchang Formation is 1677 ± 14 Ma. Combining the previous research data and this study, we can constrain the depositional age of the Dongchuan Group in central Yunnan Province to the period from the late Paleoproterozoic to early Mesoproterozoic, slightly earlier than that of the Dongchuan Group in the Dongchuan area near to the southwestern Sichuan Province. The depositional age of the Dongchuan Group is older than that of the Kunyang Group.展开更多
The Jingren deposit is part of the Qimantage metallogenic belt within the eastern Kunlun orogenic belt,the largest metallogenic belt in Qinghai Province,northwestern China.Exploration data show that the metal resource...The Jingren deposit is part of the Qimantage metallogenic belt within the eastern Kunlun orogenic belt,the largest metallogenic belt in Qinghai Province,northwestern China.Exploration data show that the metal resources of the Jingren deposit are greater than 93000 t in a mining area of 76.15 km2,which indicates significant exploration potential in the near future.Three W–E-trending faults,F1-3,dominate the extension of the mineralization zone,which consists of chalcopyrite,pyrite,magnetite,galena,sphalerite,and molybdenite as well as bismuth-bearing minerals.The deposit contains a large amount of late Triassic intrusive rocks,however,previous research did not reach a consensus on the timing or the origin of the mineralization owing to a lack of geochronological data and poor exposure conditions.In the present study,Re-Os isotopic dating from six molybdenite samples collected from a borehole of the granodiorite in the Jingren deposit using negative thermal ionization mass spectrometry(NTIMS)showed 187 Re and 187 Os concentrations of 0.26–4.40 ppm and 1.03–16.46 ppb,respectively,with an initial 187 Os/188 Os value of 0.06±0.19.This proves that the Jingren deposit has a metallogenic age of(225±4)Ma and is the product of united mineralization of the Qimantage metallogenic belt and that the Jingren deposit might actually be an Indosinian metallogeny.In addition,the Re content of these samples,at 0.42 ppm to 7.00 ppm shows that the mineralization was derived mainly from a crustal source.Furthermore,electron probe microanalysis(EPMA)conducted on chalcopyrite obtained from 22 metallic mineral samples revealed(Fe+Cu)/S ratios of 1.801–1.947 with an average of 1.852,which is lower than the ideal value(1.875).Besides,the main ore body formed in a relatively higher temperature environment than the surrounding rocks in the Jingren deposit.These data indicate that the Jingren deposit formed in a metallogenic environment at lower temperature.Moreover,according to the TiO_(2)-Al_(2)O_(3)-(MgO+MnO)and TiO_(2)-Al_(2)O_(3)-MgO genetic classification diagram for magnetite,the Jingren deposit most likely belongs to the skarn family.In addition,the Co-Ni-As genetic classification diagram of the pyrite indicates sedimentary and skarn genetic characteristics.展开更多
The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt,Eastern Tianshan shows evidence for three stages of hydrothermal mineralization:early pyrite veins(Stage 1),polymetallic sulfide±epidote-quartz(Stage...The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt,Eastern Tianshan shows evidence for three stages of hydrothermal mineralization:early pyrite veins(Stage 1),polymetallic sulfide±epidote-quartz(Stage 2),and late-stage pyrite-calcite veins(Stage 3).Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions(L),vapour-rich aqueous inclusions(V),and NaCl daughter mineral-bearing three phase inclusions(S)formed during the main stage of mineralization,and that the ore fluids represent high-temperature and high-salinity H20-NaCl hydrothermal fluids that underwent boiling.Stable isotope(H,O)data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3.Sulphur isotope compositions(6.7‰to 10.9‰)are consistent with theδ^34 S values of pyrite from the Qijiaojing Formation sandstone,indicating the primary source of the sulphur ore.Furthermore,chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303±12 Ma(MSWD=1.2).These results indicate that the Tonggou deposit is a transition between high-sulfidation and porphyry deposits which formed in the Late Carboniferous.It also suggests an increased likelihood for the occurrence of Cu(Au,Mo)in the Bogda Orogenic Belt,especially at locations where the Cu-Zn deposits are thicker;further deep drilling and exploration are encouraged in these areas.展开更多
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide ...Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.展开更多
The Abra deposit,a large lead-silver-copper–gold polymetallic deposit in Western Australia,is located at the eastern of the metallogenic belt of the Jillawarra basin in the Bangemall basin.The 4 th to the 6 th rock s...The Abra deposit,a large lead-silver-copper–gold polymetallic deposit in Western Australia,is located at the eastern of the metallogenic belt of the Jillawarra basin in the Bangemall basin.The 4 th to the 6 th rock section of the Irrigully Group of Edmund Series are the principal ore-host strata,composed mainly of sandstone and fine sandstone.The orebody in Abra can be classified into two types as upper layer-like lead-silver and lower veins or netvein copper–gold.The metal minerals are mainly galena,chalcopyrite,and pyrite,while the gangue minerals are mainly quartz,dolomite,and barite.Both ReOs isotopic age of the pyrite(1329.5±98 Ma)with the initial(187Os/188Os)=5.0±3.8 and Pb isotopic compositions(206 Pb/204 Pb=15.914–15.967,207Pb/204Pb=15.425–15.454,208Pb/204Pb=35.584–35.667)suggests that the metal minerals were sourced from the wall-rocks.d DV-SMOWvalues of quartz range from-35%to-17%whereas d18 OV-SMOWvalue range from 12%to 16%which indicates that the ore-forming fluids of Abra were mediumlow temperature and medium–low salinity,and were mainly metamorphic water and secondary atmospheric precipitation.When the medium–low temperature oreforming fluids are mixed with oxidizing reducing fluids carrying a large number of metal substances,a large number of ore-forming substances will be precipitated when the physical and chemical conditions change,thus it can be considered that the Abra deposit is a medium–low temperature hydrothermal polymetallic deposit.展开更多
An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies tha...An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.展开更多
Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of v...Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.展开更多
Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dati...Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.展开更多
Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'a...Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'an area of Shaanxi Province was firstly discovered. This deposit is currently in a detailed investigation stage, and no detailed study has been yet conducted. This work selected one molybdenite sample from the Be (W) ores in this deposit for Re-Os isotope measurements to define the time limit of tungsten and beryllium mineralization, and to further reveal the ore-forming geological setting of rare metals in the southern Qinling region.展开更多
The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most i...The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.展开更多
Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectro...Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectrometer. The results show that the δ^180 values of gold-bearing vein quartz from different levels are 1.19%-1.42%. The calculated δ^180 values of ore fluids are 0.55%-0.78%, and 319 values are from -8.64% to -6.66%. The calculated values of δ^34SH2s by the δ^34Spy values in quartz veins display sulfur isotope compositions from -0.053% to +0.413%. Carbon isotope compositions of carbonates are from -0.612% to 0.140%. The mole ratios of ^206Pb to ^204Pb, ^207Pb to ^204Pb and ^208Pb to ^204Pb in auriferous quartz vein are 16.987-17.545, 15.342-15.623, and 38.254-38.744, respectively. The age of the Zhuanghe gold deposit determined by Rb-Sr isochron of the fluid inclusions in quartzes is (143.0±5.8) Ma. These isotopic data suggest that the metallogenetic fluids are generated from magmatic hydrotherm and the origin of ore-forming matters is related to the deep-derived magmatic activities. Meanwhile, the metallogenetic epoch of the Zhuanghe gold deposit is in Yanshanian period.展开更多
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic p...We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.展开更多
The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and gar...The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.展开更多
Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in...Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in sulfides in the forms of crystal lattice or tiny platinum-group mineral (PGM) inclusions. The present data show that there is a positive relationship between Pt and Pd concentrations and Cu (Au) in porphyry copper (gold) deposits. The comparison of chondrite-normalized PGE distribution patterns between the ore-bearing porphyry intrusions and ore-barren porphyry intrusions in arc setting, 187^Os/188^Os, 87^Sr/86^Sr and S isotopes for porphyry copper (gold) deposits shows that PGEs were mainly derived from the mantle, and fluids from subduction zones devoted trivial PGE to the magma. The porphyry copper (gold) deposits associated with subducted events are most probably enriched in PGE, whereas those related to crustal thickening, lithospheric delamination or underplating rarely concentrate PGE. The osmium isotopic compositions in porphyry copper (gold) deposits reveal that (187^Os/188^Os)i values are highly variable and not lower than those of primitive upper mantle (PUM) and mantle peridotite, however, osmium concentrations are commonly lower than mantle peridotite, suggesting that parental magmas of some porphyry intrusions had experienced crustal contamination during magma evolution. Experimental investigations have proved that PGE exist in the forms of Cl^- and HS^- complexes during transportation and migration of the oreforming fluids. This paper summarizes previous studies including crucial controlling factors and mechanisms for PGE enrichment, and points out that the mantle-derived magmas parental to porphyry intrusions are the prerequisite for PGE enrichment in porphyry copper (gold) deposits. Favorable physical and chemical conditions (including salinity, temperature, pressure, pH, and oxygen fugacity) in hydrothermal fluids crucially control the PGE enrichment, and sulfur concentrations of melts play important roles in this process as well.展开更多
Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentr...Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.展开更多
Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North Chin...Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.展开更多
Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite an...Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.展开更多
基金supported by the NSFC Project(Grant Nos.42162012 and 42072094)the Open Research Project from the Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization,MNR(Grant No.ZRZYBSJSYS2022001)。
文摘The Dahongshan Fe-Cu(-Au)deposit is a superlarge deposit in the Kangdian metallogenic belt,southwestern China,comprising approximately 458 Mt of Fe ores(40%Fe)and 1.35 Mt Cu.Two main types of Fe-Cu(-Au)mineralization are present in the Dahongshan deposit:(1)early submarine volcanic exhalation and sedimentary mineralization characterized by strata-bound fine-grained magnetite and banded Fe-Cu sulfide(pyrite and chalcopyrite)hosted in the Na-rich metavolcanic rocks;(2)late hydrothermal(-vein)type mineralization characterized by Fe-Cu sulfide veins in the hosted strata or massive coarse-grained magnetite orebodies controlled by faults.While previous studies have focused primarily on the early submarine volcanic and sedimentary mineralization of the deposit,data related to late hydrothermal mineralization is lacking.In order to establish the metallogenic age and ore-forming material source of the late hydrothermal(-vein)type mineralization,this paper reports the Re-Os dating of molybdenite from the late hydrothermal vein Fe-Cu orebody and H,O,S,and Pb isotopic compositions of the hydrothermal quartz-sulfide veins.The primary aim of this study was to establish the metallogenic age and ore-forming material source of the hydrothermal type orebody.Results show that the molybdenite separated from quartz-sulfide veins has a Re-Os isochron age of 831±11 Ma,indicating that the Dahongshan Fe-Cu deposit experienced hydrothermal superimposed mineralization in Neoproterozoic.The molybdenite has a Re concentration of 99.7-382.4 ppm,indicating that the Re of the hydrothermal vein ores were primarily derived from the mantle.The δ^(34)S values of sulfides from the hydrothermal ores are 2‰-8‰ showing multi-peak tower distribution,suggesting that S in the ore-forming period was primarily derived from magma and partially from calcareous sedimentary rock.Furthermore,the abundance of radioactive Pb increased significantly from ore-bearing strata to layered and hydrothermal vein ores,which may be related to the later hydrothermal transformation.The composition of H and O isotopes within the hydrothermal quartz indicates that the ore-forming fluid is a mixture of magmatic water and a small quantity of water.These results further indicate that the late hydrothermal orebodies were formed by the Neoproterozoic magmatic hydrothermal event,which might be related to the breakup of the Rodinia supercontinent.Mantle derived magmatic hydrothermal fluid extracted ore-forming materials from the metavolcanic rocks of Dahongshan Group and formed the hydrothermal(-vein)type Fe-Cu orebodies by filling and metasomatism.
基金funded by the National Natural Science Foundation of China(Grant No.41502112 and 41702119)a project program under China Geological Survey(No.DD20160159)
文摘We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41303038, 41772070)Open Fund of State Key Laboratory of Ore Deposit Geochemistry (201502)the National Basic Research Program of China (2014CB440904)
文摘The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ^(187)Os/^(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ^(187)Os/^(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ^(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10^(-4) Ra to 2.5 × 10^(-2) Ra(Ra = 1.4 × 10^(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10^(-2) to 15.39×10^(-2), and ^(40)Ar/^(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.
基金financially supported by the Geological Survey Project of the China Geological Survey(DD20190370)。
文摘On the southwestern margin of the Yangtze Block, the Dongchuan Group consists of slightly metamorphosed sedimentary rocks, including silty slate, argillaceous slate, clayey slate, arkose, dolomite, and minor volcanic rocks. To date, it is still a controversy over the depositional age and stratigraphic sequence of the Dongchuan Group. In this study, we analyzed five samples of meta-sedimentary rocks and one sample of meta-tuff from the Yinmin, Luoxue and Etouchang Formations of the Dongchuan Group in the Yuxi region for detrital zircon U-Pb ages and Lu-Hf isotope. The detrital zircon ages of the meta-sediments vary from 3073 to 1703 Ma, mainly clustered at three periods, from 1889 to 1840, 2490 to 2008 and 2878 to 2844 Ma. The youngest age peak of all the samples is ~1859 Ma, with the εHf(t) values of the zircons ranging from-20.3 to +4.3 and more than 90% being negative, indicating that the Paleoproterozoic crustal accretion on the southwestern margin of the Yangtze Block was dominated by reworking of the ancient crustal materials involved in the assembly and breakup of the Columbia supercontinent. Another important age range is between 2490 Ma and 2008 Ma, with εHf(t) values from-14.7 to +8.9 and 70% of them are negative, suggesting that the magmatism in the source area was also dominated by reworking and recycling of the ancient crustal materials, with minor juvenile mantle substances added. The detritus was probably derived from the Paleoproterozoic crystalline basement in the southern Yuxi region. The oldest peak age is ~2847 Ma and the εHf(t) values are from-7.7 to +7.0 with 50% of both positive and negative values, demonstrating a possible ~2.85 Ga ancient continental nucleus on the southwestern margin of the Yangtze Block and substantial growth in juvenile crust materials during this period. Besides, the weighted average age of the zircons from the meta-tuff of the Etouchang Formation is 1677 ± 14 Ma. Combining the previous research data and this study, we can constrain the depositional age of the Dongchuan Group in central Yunnan Province to the period from the late Paleoproterozoic to early Mesoproterozoic, slightly earlier than that of the Dongchuan Group in the Dongchuan area near to the southwestern Sichuan Province. The depositional age of the Dongchuan Group is older than that of the Kunyang Group.
基金granted by National Key R&D Program of China(Grant No.2019YFC1805900)Scientific Research Project of Hunan Provincial Department of Education(Grant No.19C1178)Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University,Hunan),Ministry of Education(Grant No.2019YSJS07)。
文摘The Jingren deposit is part of the Qimantage metallogenic belt within the eastern Kunlun orogenic belt,the largest metallogenic belt in Qinghai Province,northwestern China.Exploration data show that the metal resources of the Jingren deposit are greater than 93000 t in a mining area of 76.15 km2,which indicates significant exploration potential in the near future.Three W–E-trending faults,F1-3,dominate the extension of the mineralization zone,which consists of chalcopyrite,pyrite,magnetite,galena,sphalerite,and molybdenite as well as bismuth-bearing minerals.The deposit contains a large amount of late Triassic intrusive rocks,however,previous research did not reach a consensus on the timing or the origin of the mineralization owing to a lack of geochronological data and poor exposure conditions.In the present study,Re-Os isotopic dating from six molybdenite samples collected from a borehole of the granodiorite in the Jingren deposit using negative thermal ionization mass spectrometry(NTIMS)showed 187 Re and 187 Os concentrations of 0.26–4.40 ppm and 1.03–16.46 ppb,respectively,with an initial 187 Os/188 Os value of 0.06±0.19.This proves that the Jingren deposit has a metallogenic age of(225±4)Ma and is the product of united mineralization of the Qimantage metallogenic belt and that the Jingren deposit might actually be an Indosinian metallogeny.In addition,the Re content of these samples,at 0.42 ppm to 7.00 ppm shows that the mineralization was derived mainly from a crustal source.Furthermore,electron probe microanalysis(EPMA)conducted on chalcopyrite obtained from 22 metallic mineral samples revealed(Fe+Cu)/S ratios of 1.801–1.947 with an average of 1.852,which is lower than the ideal value(1.875).Besides,the main ore body formed in a relatively higher temperature environment than the surrounding rocks in the Jingren deposit.These data indicate that the Jingren deposit formed in a metallogenic environment at lower temperature.Moreover,according to the TiO_(2)-Al_(2)O_(3)-(MgO+MnO)and TiO_(2)-Al_(2)O_(3)-MgO genetic classification diagram for magnetite,the Jingren deposit most likely belongs to the skarn family.In addition,the Co-Ni-As genetic classification diagram of the pyrite indicates sedimentary and skarn genetic characteristics.
基金supported by the Natural Science Foundation of Xinjiang(Grant No.2018D01C042)National Natural Science Foundation of China(Grant No.U1403391)the Application of Geological Mineral Information Database Construction in the three prefectures of south Xinjiang(Grant No.2015BAB05B01-03)
文摘The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt,Eastern Tianshan shows evidence for three stages of hydrothermal mineralization:early pyrite veins(Stage 1),polymetallic sulfide±epidote-quartz(Stage 2),and late-stage pyrite-calcite veins(Stage 3).Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions(L),vapour-rich aqueous inclusions(V),and NaCl daughter mineral-bearing three phase inclusions(S)formed during the main stage of mineralization,and that the ore fluids represent high-temperature and high-salinity H20-NaCl hydrothermal fluids that underwent boiling.Stable isotope(H,O)data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3.Sulphur isotope compositions(6.7‰to 10.9‰)are consistent with theδ^34 S values of pyrite from the Qijiaojing Formation sandstone,indicating the primary source of the sulphur ore.Furthermore,chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303±12 Ma(MSWD=1.2).These results indicate that the Tonggou deposit is a transition between high-sulfidation and porphyry deposits which formed in the Late Carboniferous.It also suggests an increased likelihood for the occurrence of Cu(Au,Mo)in the Bogda Orogenic Belt,especially at locations where the Cu-Zn deposits are thicker;further deep drilling and exploration are encouraged in these areas.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41603053)the National Key R & D Program of China (No. 2018YFC0604206)
文摘Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.
基金funded by the Joint Fund Projects(U1812402)the National Natural Science Foundation of China(41103024)the“Financial Subsidy for Overseas Mineral Resource Risk Exploration in 2010”project。
文摘The Abra deposit,a large lead-silver-copper–gold polymetallic deposit in Western Australia,is located at the eastern of the metallogenic belt of the Jillawarra basin in the Bangemall basin.The 4 th to the 6 th rock section of the Irrigully Group of Edmund Series are the principal ore-host strata,composed mainly of sandstone and fine sandstone.The orebody in Abra can be classified into two types as upper layer-like lead-silver and lower veins or netvein copper–gold.The metal minerals are mainly galena,chalcopyrite,and pyrite,while the gangue minerals are mainly quartz,dolomite,and barite.Both ReOs isotopic age of the pyrite(1329.5±98 Ma)with the initial(187Os/188Os)=5.0±3.8 and Pb isotopic compositions(206 Pb/204 Pb=15.914–15.967,207Pb/204Pb=15.425–15.454,208Pb/204Pb=35.584–35.667)suggests that the metal minerals were sourced from the wall-rocks.d DV-SMOWvalues of quartz range from-35%to-17%whereas d18 OV-SMOWvalue range from 12%to 16%which indicates that the ore-forming fluids of Abra were mediumlow temperature and medium–low salinity,and were mainly metamorphic water and secondary atmospheric precipitation.When the medium–low temperature oreforming fluids are mixed with oxidizing reducing fluids carrying a large number of metal substances,a large number of ore-forming substances will be precipitated when the physical and chemical conditions change,thus it can be considered that the Abra deposit is a medium–low temperature hydrothermal polymetallic deposit.
基金the National Natural Science Foundation of China(No.40172021)the Major State Basic Research Program of the People’s Republic of China(No.G1999043211)the New Round Geological Survey Project (DKD9902001,2001BA609A-07-04).
文摘An isochron age of 282±20 (95% conf. limit) Ma of the sulfide ores in the Huangshandong Cu-Ni sulfide deposit, the East Tianshan Mountains has been obtained through Re-Os isotopic measurement. The age implies that the Cu-Ni sulfide deposit and other related deposits in the same area occurred in a Permian extensional environment of post-collision instead of Devonian-Early Carboniferous ophiolite-related oceanic or island arc environments inferred before. It shares the same ages with the orogenic and epithermal gold deposit systems in the same area. An initial 187Os/188Os ratio of 0.25±0.04 (1σ) and a γos value of 99 on average display the participation of large quantities of crustal components into the rock-forming and ore-forming system during mineralization and magmatic emplacement.
文摘Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.
基金Project(41403035)supported by the National Natural Science Foundation of ChinaProject(13JJ4041)supported by Hunan Provincial National Natural Science Foundation,China
文摘Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.
基金financially supported by the China Postdoctoral Science Foundation(grant 2017M610960)China Geological Survey(grants No.DD20160346 and DD20160055)
文摘Objective In recent years, a series of tungsten prospecting breakthroughs have been made in the southern Qinling Mountains. Especially, a new deposit type with a scheelite -beryl-molybdenite assemblage in the Zhen'an area of Shaanxi Province was firstly discovered. This deposit is currently in a detailed investigation stage, and no detailed study has been yet conducted. This work selected one molybdenite sample from the Be (W) ores in this deposit for Re-Os isotope measurements to define the time limit of tungsten and beryllium mineralization, and to further reveal the ore-forming geological setting of rare metals in the southern Qinling region.
基金the National Science Foundation of China (41373036, 41002027)the Geological Survey of China Geological Survey Project (121201103000150006,121201066307).
文摘The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.
基金Project(20040491502) supported by the Doctoral Education Program Fund of Ministry of Education, China
文摘Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectrometer. The results show that the δ^180 values of gold-bearing vein quartz from different levels are 1.19%-1.42%. The calculated δ^180 values of ore fluids are 0.55%-0.78%, and 319 values are from -8.64% to -6.66%. The calculated values of δ^34SH2s by the δ^34Spy values in quartz veins display sulfur isotope compositions from -0.053% to +0.413%. Carbon isotope compositions of carbonates are from -0.612% to 0.140%. The mole ratios of ^206Pb to ^204Pb, ^207Pb to ^204Pb and ^208Pb to ^204Pb in auriferous quartz vein are 16.987-17.545, 15.342-15.623, and 38.254-38.744, respectively. The age of the Zhuanghe gold deposit determined by Rb-Sr isochron of the fluid inclusions in quartzes is (143.0±5.8) Ma. These isotopic data suggest that the metallogenetic fluids are generated from magmatic hydrotherm and the origin of ore-forming matters is related to the deep-derived magmatic activities. Meanwhile, the metallogenetic epoch of the Zhuanghe gold deposit is in Yanshanian period.
基金financially supported by Geological Survey of China Projects(Nos.1212010814054,1212010911049)Ministry of land and resources of public welfare scientific research(No.201311116)
文摘We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41030423,41072068 and 40872071)National Basic Research Program of China (Grant No. 2006CB403502)+2 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. BJ091349)National Found for Fostering Talents of Basic Sciences (Grant No. J0830519)Graduate Innovation and Creativity Funds of Northwest University,China (Grant No. 10YZZ24)
文摘The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.
基金supported by the 12th Five-Year Plan project of State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of Sciences(SKLOG-ZY125-06)the Knowledge Innovation Project,Chinese Academic Sciences(KZCX2-YW-136-1)
文摘Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in sulfides in the forms of crystal lattice or tiny platinum-group mineral (PGM) inclusions. The present data show that there is a positive relationship between Pt and Pd concentrations and Cu (Au) in porphyry copper (gold) deposits. The comparison of chondrite-normalized PGE distribution patterns between the ore-bearing porphyry intrusions and ore-barren porphyry intrusions in arc setting, 187^Os/188^Os, 87^Sr/86^Sr and S isotopes for porphyry copper (gold) deposits shows that PGEs were mainly derived from the mantle, and fluids from subduction zones devoted trivial PGE to the magma. The porphyry copper (gold) deposits associated with subducted events are most probably enriched in PGE, whereas those related to crustal thickening, lithospheric delamination or underplating rarely concentrate PGE. The osmium isotopic compositions in porphyry copper (gold) deposits reveal that (187^Os/188^Os)i values are highly variable and not lower than those of primitive upper mantle (PUM) and mantle peridotite, however, osmium concentrations are commonly lower than mantle peridotite, suggesting that parental magmas of some porphyry intrusions had experienced crustal contamination during magma evolution. Experimental investigations have proved that PGE exist in the forms of Cl^- and HS^- complexes during transportation and migration of the oreforming fluids. This paper summarizes previous studies including crucial controlling factors and mechanisms for PGE enrichment, and points out that the mantle-derived magmas parental to porphyry intrusions are the prerequisite for PGE enrichment in porphyry copper (gold) deposits. Favorable physical and chemical conditions (including salinity, temperature, pressure, pH, and oxygen fugacity) in hydrothermal fluids crucially control the PGE enrichment, and sulfur concentrations of melts play important roles in this process as well.
基金financially supported by the National Natural Science Foundation of China (grant No.41502076)the Leading Talents Plan Project of Science and Technology of Yunnan Province (grant No.2013HA001)the Science Research Fund of Yunnan Provincial Education Department (grant No.2015Y066)
文摘Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.
基金supported by the National Science Foundation of China(grants 41302042 and 41672217)the Fundamental Research Funds for the Central Universities(grants N170104022).
文摘Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.
基金sponsored by the China Geological Survey(grants No.1212011120335 and 12120114006201)
文摘Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.