期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seasonal variation in soil microbial biomass carbon and nitrogen in an artificial sand-binding vegetation area in Shapotou, northern China 被引量:2
1
作者 YuYan Zhou XuanMing Zhang +2 位作者 XiaoHong Jia JinQin Ma YanHong Gao 《Research in Cold and Arid Regions》 CSCD 2013年第6期733-738,共6页
In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time pe... In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility. 展开更多
关键词 re-vegetation area soil microbial biomass carbon soil microbial biomass nitrogen
下载PDF
Effects of artificial vegetation arrangement and structure on the colonization and development of biological soil crusts
2
作者 Yang Zhao Peng Zhang +1 位作者 YiGang Hu Lei Huang 《Research in Cold and Arid Regions》 CSCD 2016年第4期343-349,共7页
The colonization and development of biological soil crusts (BSCs) are rarely discussed when investigating vegetation restoration with difference arrangement and structure of anthropogenically damaged areas in semi-a... The colonization and development of biological soil crusts (BSCs) are rarely discussed when investigating vegetation restoration with difference arrangement and structure of anthropogenically damaged areas in semi-arid regions. The present study analyzes the relationships among coverage, height and density of woody vegetation and coverage and thickness of BSCs on the surface mine dumpsite in Heidaigou, China. Results showed that PR (Prunus sibirica L.), PT (Pinus tabulaeformis Carr.) and PPr (P. tabulaeformis Carr., P. sibirica L.) types had the highest coverage of total BSCs, which were 76.8%, 75.9% and 78.9%, respectively and PR showed the thickest BSCs of 4.41 mm. There was a significant correlation between coverage and thickness of BSCs and coverage and height of woody vegetation as a unimodal curve. Our findings suggest that a single woody plant species and low level coverage and height (no more than 30% and 300 cm, respectively) of woody plants may be able to create suitable conditions for facilitating BSCs restoration on the surface of mine dumpsites. The effects of vegetation arrangement and structure on BSCs colonization and development should be considered in reconstructing and managing woody vegetation in disturbed environments, such as surface mine dumpsites in semi-arid areas. 展开更多
关键词 vegetation coverage mine dumping site re-vegetation woody vegetation
下载PDF
Microbiomes of Top and Sub-Layers of Semi-Arid Soils in North-Eastern Nigeria Are Rich in Firmicutes and Proteobacteria with Surprisingly High Diversity of Rare Species
3
作者 Mwajim Bukar Oluwole Sodipo +4 位作者 Karim Dawkins Roberto Ramirez Jummai T. Kaldapa Martha Tarfa Nwadiuto Esiobu 《Advances in Microbiology》 2019年第1期102-118,共17页
Borno state is the second largest state in Nigeria with over 70,000 square kilometers of diverse ecosystems including parts of the fertile Lake Chad basin. However, more than 2/3 of this landmass is threatened with dr... Borno state is the second largest state in Nigeria with over 70,000 square kilometers of diverse ecosystems including parts of the fertile Lake Chad basin. However, more than 2/3 of this landmass is threatened with drought, advancing desertification and degraded soils. Most restoration efforts involve revegetation, which in the past has met with limited success. Microbial communities of soils play a pivotal role in soil fertility and plant cover. We conducted the first metagenomic amplicon sequencing study, comparing two soil depths to determine whether soil bacteria abundance and diversity in the harsh bare soils were sufficient to sustain greening efforts. The goal was to glean insights to guide microbial inoculant formulation needed in the region. Samples from top (0 - 15 cm) and sub (16 - 65 cm) soils were collected from five strategic locations in the state. Using next generation Illumina sequencing protocols, total DNA extracted directly from the soils was sequenced and analyzed by QIIME. Metadata collected from site showed scorching temperatures of over 46?C, near zero moisture level and a pH of about 6 for top soil. At 65 cm depth, the temperature averaged 32?C with a pH of 5 and significantly higher soil moisture of 0.1%. The bacterial community structure was unexpectedly very diverse at both soil depths samples, recording a ChaO1 index ranging from 909 to 4296 and a Shannon diversity range of 3.54 to 6.33. The most abundant phyla in both soil depths were the Firmicutes and Proteobacteria;however the relative abundance of composite lower taxa was strikingly different. Operational taxonomic units and diversity indices were highest for top soils and were dominated by members of resilient groups of Actinobacteria, Firmucutes, Acidobacteria and numerous other less well-known taxa whose individual relative abundance did not exceed 3% of total population. The high diversity and richness of Proteobacteria (at 65 cm depth), some of which are key to soil fertility, suggest that revegetation efforts could be improved by shifting the gradient of these microbiota upwards using shades and micro-irrigation. Soils in semi-arid regions in Nigeria contain numerous operational taxonomic bacterial groups with potential thermophilic and drought genetic resources to be mined. Microbial community structure beneath the top soil appears stable and should be the target sample for the assessments of climatic change impact on microbial community structure in environments like this. 展开更多
关键词 Microbiomes SEMI-ARID Soils Microbial Community Structure SOIL Bacteria SOIL Fertility Top-Soil re-vegetation PROTEOBACTERIA FIRMICUTES Sub-Surface OTU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部