Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride ...Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.展开更多
A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC- EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2B...A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC- EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye). The effect of viscosity 01), basicity (B = [OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated. The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA. PAC-EPI-DMA with an intermediate η (2400 mPa.sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers. The Wp of the composite flocculant was a minor important factor for the flocculation. The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp, whereas the charge neutralization of them was weaker with the increase of Wp. There was interaction between Wp and B on the removal of reactive dye. The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater, which could achieve high reactive dye removal efficiency with low organic dosage.展开更多
Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-se...Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.展开更多
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des...The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.展开更多
Based on the functional properties of electrospun cellulose nanofibers(CNF),scientists are showing substantial interest to enhance the aesthetic properties.However,the lower color yield has remained a big challenge du...Based on the functional properties of electrospun cellulose nanofibers(CNF),scientists are showing substantial interest to enhance the aesthetic properties.However,the lower color yield has remained a big challenge due to the higher surface area of nanofibers.In this study,we attempted to improve the color yield properties of CNF by the pad-steam dyeing method.Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA)nanofibers.Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized.SEM images revealed smooth morphology with an increase in the average diameter of nanofibers.FTIR results showed no change in the chemical structure after dyeing of CNF.Color fastness results demonstrated excellent ratings for reactive dyes,which indicate good dye fixation properties and no color loss during the washing process.The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF,which can be utilized for functional garments,such as breathable raincoats and disposable face masks.展开更多
In order to investigate the optimal foam dyeing process and the compatibility of trichromatic reactive dyes in foam dyeing,varying proportions of ternary mixtures of Remazol Red RGB,Remazol Yellow RGB and Remazol Navy...In order to investigate the optimal foam dyeing process and the compatibility of trichromatic reactive dyes in foam dyeing,varying proportions of ternary mixtures of Remazol Red RGB,Remazol Yellow RGB and Remazol Navy RGB have been used to dye bleached cotton fabric.The results showed that,the optimal dyeing condition in foam dyeing was alkaline agent 15 g/L,stabilizers 0.7g/L,blow ratio 8,and steaming time 1.5 min,respectively.Compared with conventional pad-dyeing,color strength and fixation rate of dyed fabric were higher than those of conventional paddyeing,the dyed fabric had the same washing and rubbing fastness as conventional pad-dyeing and the color shade of dyed fabric was different from that of conventional pad-dyeing.The color triangle,which consisted of 66 dyed fabric samples dyed with trichromatic reactive dyes in different proportions,could provide foundation for computer colorant formulation of the color matching system.展开更多
A new instant-fixation dyeing process was presented and applied for the dyeing of cotton fabric with bi-functional reactive dyes, in which electrolyte and alkali were added in the dye bath first, and then the pre-prep...A new instant-fixation dyeing process was presented and applied for the dyeing of cotton fabric with bi-functional reactive dyes, in which electrolyte and alkali were added in the dye bath first, and then the pre-prepared dye solution was dropped continuously. The color depth of dyed fabric with this process was much higher than that with conventional process and the dosage of the dyes could be reduced as much as 35% when the dark shades are dyed. Moreover, the dye fixation could be increased by 10% with the similar color depth. This novel dyeing method can be applied to both woven and knitted cotton fabric.展开更多
The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring a...The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring and bleaching are performed and conventional exhaust dyeing method employed by IR laboratory sample dyeing machine. Various alkali concentrations such as 6, 7, 8, 9 and 10 g/L are employed and other parameters are kept fixed. The color strength (K/S) and color fastness to wash and rubbing are examined and evaluated. It is revealed that with the increase in alkali concentration from 6 g/L to 8 g/L the value of K/S increases and then up to 10 g/L the value decreases. The overall color fastness properties to washing and rubbing for the dyed samples range from good to excellent.展开更多
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the su...To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...展开更多
Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption o...Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption of synthetic dyes, Reactive Brilliant Blue KN- R, and Reactive Brilliant Red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for Reactive Brilliant Red K-2BP and 92.5% for Reactive Brilliant Blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.展开更多
Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure ind...Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (<40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.展开更多
Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chroma...Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.展开更多
The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation ...The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.展开更多
The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted...The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.展开更多
The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous sol...The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous solution. The pH of dye solution played an important role on the dye uptake. With the solution pH increase, the MB uptake increased; whereas the RR4 uptake decreased. The maximum uptake of RR4 by protonated sludge was 73.7 mg/g at pH 1, and the maximum uptake of MB by sludge was 235.3 mg/g at pH 9. Three functional groups, including carboxyl, phosphonate, and amine group, were identified by potentiometric titration, fourier transform infrared (FT-IR) spectrometry, and X-ray photoelectron spectroscopy (XPS). The anionic functional groups, phosphonate and carboxyl group, were identified as the binding sites for the cationic MB. Amine groups were identified to bind RR4. The main mechanism of the reactive dyestuffs adsorption is electrostatic interaction.展开更多
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm...In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.展开更多
In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was ...In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.展开更多
Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,phot...Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.展开更多
The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and lig...The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou展开更多
Physical and chemical properties of wool surface significantly affect the absorbency,rate of dye bath exhaustion and fixation of the industrial dyes.Hence,surface modification is a necessary operation prior to colorat...Physical and chemical properties of wool surface significantly affect the absorbency,rate of dye bath exhaustion and fixation of the industrial dyes.Hence,surface modification is a necessary operation prior to coloration process in wool wet processing industries.Plasma treatment is an effective alternative for physiochemical modification of wool surface.However,optimum processing parameters to get the expected modification are still under investigation,hence this technology is still under development in the wool wet processing industries.Therefore,in this paper,treatment parameters with the help of simple dielectric barrier discharge plasma reactor and air as a plasma gas,which could be a promising combination for treatment of wool substrate at industrial scale were schematically studied,and their influence on the water absorbency,mechanical,and dyeing properties of twill woven wool fabric samples are reported.It is expected that the results will assist to the wool coloration industries to improve the dyeing processes.展开更多
基金Supported by the National Natural Science Foundation of China(2137604221421005)+2 种基金the National Key Technology R&D Program(2013BAF08B06)Innovative Research Team of Ministry of Education of the People's Republic of China(IRT-13R06)Dalian University of Technology(DUT2013TB07)
文摘Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.
基金supported by the National Natural Science Foundation of China (No. 50578089,21077066)the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2006BAJ08B05-2)+2 种基金the Scientific Technology Research and Development Program of Shandong of China (No. 2009GG10006003 2010GZX20605)the Natural Science Foundation of Shandong Province of China (No. ZR2010BM014)
文摘A coagulation/flocculation process using the composite flocculant polyaluminum chloride-epichlorohydrin dimethylamine (PAC- EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye). The effect of viscosity 01), basicity (B = [OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated. The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA. PAC-EPI-DMA with an intermediate η (2400 mPa.sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers. The Wp of the composite flocculant was a minor important factor for the flocculation. The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp, whereas the charge neutralization of them was weaker with the increase of Wp. There was interaction between Wp and B on the removal of reactive dye. The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater, which could achieve high reactive dye removal efficiency with low organic dosage.
基金Supported by the National Science Foundation for Distinguished Young Scholar of China(20525620) the National Natural Science Foundation of China(20806013) the Program for Changjiang Scholar and Innovative Research Team in University(IRT 0711)
文摘Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.
基金supported by Natural Science Foundation of Shanghai (20ZR1400300)Textile Vision Applied Basic Research Project (J202005)National Key Research & Development Program of China (2017YFB0309600)。
文摘The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.
基金This work was supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2019B010941001)the Natural Science Foundation of Guangdong Province,China(No.2018A0303100022).
文摘Based on the functional properties of electrospun cellulose nanofibers(CNF),scientists are showing substantial interest to enhance the aesthetic properties.However,the lower color yield has remained a big challenge due to the higher surface area of nanofibers.In this study,we attempted to improve the color yield properties of CNF by the pad-steam dyeing method.Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA)nanofibers.Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized.SEM images revealed smooth morphology with an increase in the average diameter of nanofibers.FTIR results showed no change in the chemical structure after dyeing of CNF.Color fastness results demonstrated excellent ratings for reactive dyes,which indicate good dye fixation properties and no color loss during the washing process.The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF,which can be utilized for functional garments,such as breathable raincoats and disposable face masks.
文摘In order to investigate the optimal foam dyeing process and the compatibility of trichromatic reactive dyes in foam dyeing,varying proportions of ternary mixtures of Remazol Red RGB,Remazol Yellow RGB and Remazol Navy RGB have been used to dye bleached cotton fabric.The results showed that,the optimal dyeing condition in foam dyeing was alkaline agent 15 g/L,stabilizers 0.7g/L,blow ratio 8,and steaming time 1.5 min,respectively.Compared with conventional pad-dyeing,color strength and fixation rate of dyed fabric were higher than those of conventional paddyeing,the dyed fabric had the same washing and rubbing fastness as conventional pad-dyeing and the color shade of dyed fabric was different from that of conventional pad-dyeing.The color triangle,which consisted of 66 dyed fabric samples dyed with trichromatic reactive dyes in different proportions,could provide foundation for computer colorant formulation of the color matching system.
文摘A new instant-fixation dyeing process was presented and applied for the dyeing of cotton fabric with bi-functional reactive dyes, in which electrolyte and alkali were added in the dye bath first, and then the pre-prepared dye solution was dropped continuously. The color depth of dyed fabric with this process was much higher than that with conventional process and the dosage of the dyes could be reduced as much as 35% when the dark shades are dyed. Moreover, the dye fixation could be increased by 10% with the similar color depth. This novel dyeing method can be applied to both woven and knitted cotton fabric.
文摘The effect of alkali concentrations has been studied on the color strength (K/S) and color fastness properties of single jersey cotton knitted fabrics dyed with 1% Novacron Red S-B reactive dye. Same bath scouring and bleaching are performed and conventional exhaust dyeing method employed by IR laboratory sample dyeing machine. Various alkali concentrations such as 6, 7, 8, 9 and 10 g/L are employed and other parameters are kept fixed. The color strength (K/S) and color fastness to wash and rubbing are examined and evaluated. It is revealed that with the increase in alkali concentration from 6 g/L to 8 g/L the value of K/S increases and then up to 10 g/L the value decreases. The overall color fastness properties to washing and rubbing for the dyed samples range from good to excellent.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA02Z218)the Open Project Program of Key Lab-oratory of Eco-Textiles,Jiangnan University,Ministry of Education,China(No.KLET0625) the Youth Fundof Jiangnan University(No.2006LQN002).
文摘To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...
基金Project supported by the Science and Technology Foundation of Guangzhou Municipal Environment Protection Bureau (No. 006).
文摘Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption of synthetic dyes, Reactive Brilliant Blue KN- R, and Reactive Brilliant Red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for Reactive Brilliant Red K-2BP and 92.5% for Reactive Brilliant Blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.
文摘Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (<40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.
文摘Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.
基金This work was supported by the Program for New Century Excellent Talents in University in China(No.NCET-05-0612)the National Natural Science Foundation of China(No.20677014).
文摘The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.
基金Jiangsu Province Project of Postgraduate Innovation Engineering,China(No.CXZZ12_0821)Industry-academic Joint Technological Innovations Fund Project of Jiangsu Province,China(No.BY2012120)Suzhou Project of Scientific and Technical Supporting,China(No.ZXS2012001)
文摘The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education of China
文摘The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous solution. The pH of dye solution played an important role on the dye uptake. With the solution pH increase, the MB uptake increased; whereas the RR4 uptake decreased. The maximum uptake of RR4 by protonated sludge was 73.7 mg/g at pH 1, and the maximum uptake of MB by sludge was 235.3 mg/g at pH 9. Three functional groups, including carboxyl, phosphonate, and amine group, were identified by potentiometric titration, fourier transform infrared (FT-IR) spectrometry, and X-ray photoelectron spectroscopy (XPS). The anionic functional groups, phosphonate and carboxyl group, were identified as the binding sites for the cationic MB. Amine groups were identified to bind RR4. The main mechanism of the reactive dyestuffs adsorption is electrostatic interaction.
基金This work was financially support by the State Key Laboratory of Pollution Control and Resources Reuse, China (Tongji University, Grant PCRRF 05003).
文摘In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.
文摘In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.
文摘Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.
文摘The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou
基金financially supported by the China National Textile & Apparel Council (2013‘Textile Vision’ Applied Basic Research,2013-153)the Collaborative Innovation Plan of Hubei Province for Key Technology of Eco-Ramie Industry (2014–8)
文摘Physical and chemical properties of wool surface significantly affect the absorbency,rate of dye bath exhaustion and fixation of the industrial dyes.Hence,surface modification is a necessary operation prior to coloration process in wool wet processing industries.Plasma treatment is an effective alternative for physiochemical modification of wool surface.However,optimum processing parameters to get the expected modification are still under investigation,hence this technology is still under development in the wool wet processing industries.Therefore,in this paper,treatment parameters with the help of simple dielectric barrier discharge plasma reactor and air as a plasma gas,which could be a promising combination for treatment of wool substrate at industrial scale were schematically studied,and their influence on the water absorbency,mechanical,and dyeing properties of twill woven wool fabric samples are reported.It is expected that the results will assist to the wool coloration industries to improve the dyeing processes.