The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des...The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.展开更多
Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure ind...Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (<40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.展开更多
To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the su...To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...展开更多
Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption o...Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption of synthetic dyes, Reactive Brilliant Blue KN- R, and Reactive Brilliant Red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for Reactive Brilliant Red K-2BP and 92.5% for Reactive Brilliant Blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.展开更多
Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-se...Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.展开更多
Reactive Red 195, which is an azoic anionic dye characterized by the presence of five sulfonic groups and one azoic group, is efficiently removed using chitosan. The increasing chitosan dose had a dramatic positive im...Reactive Red 195, which is an azoic anionic dye characterized by the presence of five sulfonic groups and one azoic group, is efficiently removed using chitosan. The increasing chitosan dose had a dramatic positive impact on the achieved color removal, there was approximately a linear relationship between chitosan dose and color removal of dye before color removal reach maximum. Also, the increase of dye concentration led to the increase of chitosan dosage in order to get the same color remova l.92 mg/L of chitosan dosage was sufficient to achieve complete remove of dye at initial concentration of dye at 200 mg/L. For the higher concentrations of dye, high dosages were necessary to reach complete color removal. On the other hand, the use of adsorption interferents(Fe^2+ , Na^+ , HCO3^- and others) can be interesting, addition of ions had effect on the color removal of Reactive Red 195. Comparing with blank, addition of chemical species approximately decreased the color removal except Na^+ and combination of Fe^2+ + HCO3^- . However, comparing with Fe^2+ alone and HCO3^- alone, combination of Fe^2+ + HCO3^- increased the color removal.展开更多
Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chroma...Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.展开更多
The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous sol...The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous solution. The pH of dye solution played an important role on the dye uptake. With the solution pH increase, the MB uptake increased; whereas the RR4 uptake decreased. The maximum uptake of RR4 by protonated sludge was 73.7 mg/g at pH 1, and the maximum uptake of MB by sludge was 235.3 mg/g at pH 9. Three functional groups, including carboxyl, phosphonate, and amine group, were identified by potentiometric titration, fourier transform infrared (FT-IR) spectrometry, and X-ray photoelectron spectroscopy (XPS). The anionic functional groups, phosphonate and carboxyl group, were identified as the binding sites for the cationic MB. Amine groups were identified to bind RR4. The main mechanism of the reactive dyestuffs adsorption is electrostatic interaction.展开更多
Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis fo...Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis for the effective recovery of the cell culture species, cell immobilisation has been established on chemically modified cellulose. The modification was achieved by chemically inducing the graft copolymerisation of methacrylic acid onto cotton fabric. The immobilised cells were able to decolorise the dye. The immobilisation methods, physical adsorption, “growing-in” and chemical coupling, were compared. Each of the methods was effective to some extent. However, the latter two immobilisation methods provided the greater effect in decoloration. Each of these immobilised systems is relatively simple to achieve, whether by adsorption, physical interlocking or covalent coupling. The graft copolymer is able to offer versatility in use. The decoloration was shown to be rapid under relatively simple processing conditions. Thus, compared with the established controls, complete decoloration of solutions of Remazol Black B was observed. The potential use of the graft copolymer substrate as support for a biochemical agent was confirmed.展开更多
Reactive bright blue rare earth dyestuffs were prepared by using reactive bright blue and lanthanum oxide,praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, erbium...Reactive bright blue rare earth dyestuffs were prepared by using reactive bright blue and lanthanum oxide,praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, erbium oxide, lutetium oxide, yttrium oxide respectively for dyeing silk cloth.The degree of dyeing of reactive bright blue praseodymium and the degree of fixation of reactive bright blue gadolinium are the biggest, and 22.9% and 7 %are increased with that of reactive bright blue respectively.The spectra of reactive bright blue rare earth and reactive bright blue were studied by UV-VIS.In 200.00 ~ 800.00 nm, reactive bright blue has four absorption peaks, reactive bright blue rare earth has three absorption peaks; in 420.00 ~ 760.00 nm, reactive bright blue has two absorption peaks at 661.50 nm and 625.50 nm, respectively, and λmax is 661.50 nm; reactive bright blue rare earth has one absorption peak at 620.50, 618.00, 622.00, 623.00, 622.50, 619.50, 619.00, 621.00, 624.00, 620.00 nm adding La3+ ,Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Er3+, Lu3+, Y3+respectively.展开更多
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm...In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.展开更多
Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride ...Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.展开更多
Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activat...Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activated carbon were investigated in batch systems. The experimental findings showed that the removal efficiencies of three dyes onto activated carbon were maximum at the initial solution pH of 4.5 - 6.0. Thermodynamic studies suggested that adsorption reaction was an endothermic and spontaneous process. Adsorption isotherm of the three dyes obeyed Freundlich isotherm modal. Dye adsorption capacities of activated carbon were 59.88, 71.94 and 131.93 mg·g?1 for RR23, RB171 and RB4 at 27?C, respectively. Second-order kinetic models fitted better to the equilibrium data of three dyes. The adsorption process on activated carbon was mainly controlled by intraparticle diffusion mechanism.展开更多
In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was ...In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.展开更多
Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper present...Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.展开更多
Silk dyeing with several classes of reactive dyes was studied.A class of reactive dyes con-taining(N-methyl-β-sulfoethylamino)ethylsulfonyl groups for silk is presented.A new method forintroducing such a reactive gro...Silk dyeing with several classes of reactive dyes was studied.A class of reactive dyes con-taining(N-methyl-β-sulfoethylamino)ethylsulfonyl groups for silk is presented.A new method forintroducing such a reactive group and a kinetic studies on the reaction mechanism involved are pro-posed.A kinetic isotopic effect on dyeing mechanism with silk is discussed and the optimum dyeingtechniques recommended.Dyeing or printing was carried out in neutral media;brilliant shades,goodfastness,high fixation and excellent storage stability are given.展开更多
A novel carbon ceramic electrode consisting of Cu NPs and MWCNT was developed to treat reactive orange 84(RO84) wastewater using ultrasound-assisted electrochemical degradation. The proposed electrode generated more h...A novel carbon ceramic electrode consisting of Cu NPs and MWCNT was developed to treat reactive orange 84(RO84) wastewater using ultrasound-assisted electrochemical degradation. The proposed electrode generated more hydroxyl radicals than non-nanoparticle electrodes did. In addition, a new electrochemical sensor was applied to determine residue RO84 in an aqueous medium during discoloration. This sensor is based on a glassy carbon electrode modified with gold nanourchins and graphene oxide and can detect RO84 concentration in the range of 1.0–1200 μmol·L^-1 with the detection limit of 0.03 μmol·L^-1. The degradation effects of the modified electrode on RO84 were evaluated systematically with different initial pH values, time durations, and amounts of Cu NPs and MWCNT. The results suggested that the removal efficiency of RO84 was approximately 83% after120 min of electrolysis in a phosphate buffer with pH 8.0 using a carbon ceramic electrode made with 4.0 wt%Cu NPs and 4.0 wt% MWCNT. The possible mechanism of RO84 degradation was monitored by gas chromatography–mass spectrometry, and degradation pathways were proposed.展开更多
Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,phot...Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.展开更多
The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and lig...The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou展开更多
基金supported by Natural Science Foundation of Shanghai (20ZR1400300)Textile Vision Applied Basic Research Project (J202005)National Key Research & Development Program of China (2017YFB0309600)。
文摘The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.
文摘Ecological toxicity of reactive X\|3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (<40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2007AA02Z218)the Open Project Program of Key Lab-oratory of Eco-Textiles,Jiangnan University,Ministry of Education,China(No.KLET0625) the Youth Fundof Jiangnan University(No.2006LQN002).
文摘To achieve effective decolorization of reactive dyes,laccase immobilization was investigated.Laccase 0.2%(m/V)(Denilite IIS) was trapped in beads of alginate/gelatin blent with polyethylene glycol(PEG),and then the supporters were activated by cross-linking with glutaraldehyde.The results of repeated batch decolorization showed that gelatin and appropriate concentration of glutaraldehyde accelerated the decolorization of Reactive Red B-3BF(RRB);PEG had a positive effect on enzyme stability and led to an inc...
基金Project supported by the Science and Technology Foundation of Guangzhou Municipal Environment Protection Bureau (No. 006).
文摘Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillusfumigatus. The adsorption of synthetic dyes, Reactive Brilliant Blue KN- R, and Reactive Brilliant Red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for Reactive Brilliant Red K-2BP and 92.5% for Reactive Brilliant Blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.
基金Supported by the National Science Foundation for Distinguished Young Scholar of China(20525620) the National Natural Science Foundation of China(20806013) the Program for Changjiang Scholar and Innovative Research Team in University(IRT 0711)
文摘Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.
基金The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technologyin Zhejiang University of Technology
文摘Reactive Red 195, which is an azoic anionic dye characterized by the presence of five sulfonic groups and one azoic group, is efficiently removed using chitosan. The increasing chitosan dose had a dramatic positive impact on the achieved color removal, there was approximately a linear relationship between chitosan dose and color removal of dye before color removal reach maximum. Also, the increase of dye concentration led to the increase of chitosan dosage in order to get the same color remova l.92 mg/L of chitosan dosage was sufficient to achieve complete remove of dye at initial concentration of dye at 200 mg/L. For the higher concentrations of dye, high dosages were necessary to reach complete color removal. On the other hand, the use of adsorption interferents(Fe^2+ , Na^+ , HCO3^- and others) can be interesting, addition of ions had effect on the color removal of Reactive Red 195. Comparing with blank, addition of chemical species approximately decreased the color removal except Na^+ and combination of Fe^2+ + HCO3^- . However, comparing with Fe^2+ alone and HCO3^- alone, combination of Fe^2+ + HCO3^- increased the color removal.
文摘Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education of China
文摘The sludge, which was collected from a biological coke wastewater treatment plant, was used as a low-cost adsorbent in the removal of reactive dyes (Methylene Blue (MB) and Reactive Red 4 (RR4)) from aqueous solution. The pH of dye solution played an important role on the dye uptake. With the solution pH increase, the MB uptake increased; whereas the RR4 uptake decreased. The maximum uptake of RR4 by protonated sludge was 73.7 mg/g at pH 1, and the maximum uptake of MB by sludge was 235.3 mg/g at pH 9. Three functional groups, including carboxyl, phosphonate, and amine group, were identified by potentiometric titration, fourier transform infrared (FT-IR) spectrometry, and X-ray photoelectron spectroscopy (XPS). The anionic functional groups, phosphonate and carboxyl group, were identified as the binding sites for the cationic MB. Amine groups were identified to bind RR4. The main mechanism of the reactive dyestuffs adsorption is electrostatic interaction.
文摘Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis for the effective recovery of the cell culture species, cell immobilisation has been established on chemically modified cellulose. The modification was achieved by chemically inducing the graft copolymerisation of methacrylic acid onto cotton fabric. The immobilised cells were able to decolorise the dye. The immobilisation methods, physical adsorption, “growing-in” and chemical coupling, were compared. Each of the methods was effective to some extent. However, the latter two immobilisation methods provided the greater effect in decoloration. Each of these immobilised systems is relatively simple to achieve, whether by adsorption, physical interlocking or covalent coupling. The graft copolymer is able to offer versatility in use. The decoloration was shown to be rapid under relatively simple processing conditions. Thus, compared with the established controls, complete decoloration of solutions of Remazol Black B was observed. The potential use of the graft copolymer substrate as support for a biochemical agent was confirmed.
文摘Reactive bright blue rare earth dyestuffs were prepared by using reactive bright blue and lanthanum oxide,praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, erbium oxide, lutetium oxide, yttrium oxide respectively for dyeing silk cloth.The degree of dyeing of reactive bright blue praseodymium and the degree of fixation of reactive bright blue gadolinium are the biggest, and 22.9% and 7 %are increased with that of reactive bright blue respectively.The spectra of reactive bright blue rare earth and reactive bright blue were studied by UV-VIS.In 200.00 ~ 800.00 nm, reactive bright blue has four absorption peaks, reactive bright blue rare earth has three absorption peaks; in 420.00 ~ 760.00 nm, reactive bright blue has two absorption peaks at 661.50 nm and 625.50 nm, respectively, and λmax is 661.50 nm; reactive bright blue rare earth has one absorption peak at 620.50, 618.00, 622.00, 623.00, 622.50, 619.50, 619.00, 621.00, 624.00, 620.00 nm adding La3+ ,Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Er3+, Lu3+, Y3+respectively.
基金This work was financially support by the State Key Laboratory of Pollution Control and Resources Reuse, China (Tongji University, Grant PCRRF 05003).
文摘In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.
基金Supported by the National Natural Science Foundation of China(2137604221421005)+2 种基金the National Key Technology R&D Program(2013BAF08B06)Innovative Research Team of Ministry of Education of the People's Republic of China(IRT-13R06)Dalian University of Technology(DUT2013TB07)
文摘Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.
文摘Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activated carbon were investigated in batch systems. The experimental findings showed that the removal efficiencies of three dyes onto activated carbon were maximum at the initial solution pH of 4.5 - 6.0. Thermodynamic studies suggested that adsorption reaction was an endothermic and spontaneous process. Adsorption isotherm of the three dyes obeyed Freundlich isotherm modal. Dye adsorption capacities of activated carbon were 59.88, 71.94 and 131.93 mg·g?1 for RR23, RB171 and RB4 at 27?C, respectively. Second-order kinetic models fitted better to the equilibrium data of three dyes. The adsorption process on activated carbon was mainly controlled by intraparticle diffusion mechanism.
文摘In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.
文摘Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.
基金Supported by National Natural Science Foundation of China
文摘Silk dyeing with several classes of reactive dyes was studied.A class of reactive dyes con-taining(N-methyl-β-sulfoethylamino)ethylsulfonyl groups for silk is presented.A new method forintroducing such a reactive group and a kinetic studies on the reaction mechanism involved are pro-posed.A kinetic isotopic effect on dyeing mechanism with silk is discussed and the optimum dyeingtechniques recommended.Dyeing or printing was carried out in neutral media;brilliant shades,goodfastness,high fixation and excellent storage stability are given.
文摘A novel carbon ceramic electrode consisting of Cu NPs and MWCNT was developed to treat reactive orange 84(RO84) wastewater using ultrasound-assisted electrochemical degradation. The proposed electrode generated more hydroxyl radicals than non-nanoparticle electrodes did. In addition, a new electrochemical sensor was applied to determine residue RO84 in an aqueous medium during discoloration. This sensor is based on a glassy carbon electrode modified with gold nanourchins and graphene oxide and can detect RO84 concentration in the range of 1.0–1200 μmol·L^-1 with the detection limit of 0.03 μmol·L^-1. The degradation effects of the modified electrode on RO84 were evaluated systematically with different initial pH values, time durations, and amounts of Cu NPs and MWCNT. The results suggested that the removal efficiency of RO84 was approximately 83% after120 min of electrolysis in a phosphate buffer with pH 8.0 using a carbon ceramic electrode made with 4.0 wt%Cu NPs and 4.0 wt% MWCNT. The possible mechanism of RO84 degradation was monitored by gas chromatography–mass spectrometry, and degradation pathways were proposed.
文摘Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.
文摘The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou