Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a ...Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed.The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment.For the non-convergence power flow,the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes by node type switching.And the quantified reactive power non-convergence index is acquired.Then,the action space and reward value of deep reinforcement learning are reasonably designed and the adjustment strategy is obtained by taking the reactive power non-convergence index as the algorithm state space.Finally,the effectiveness of the power flow convergence adjustment algorithm is verified by an actual power grid system in a province.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed...This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.展开更多
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
The main goal of this article is to compare traditional three phase system with one wire three-phase system. There are several obvious advantages of one wire system, for example cost, reliability and other. But there ...The main goal of this article is to compare traditional three phase system with one wire three-phase system. There are several obvious advantages of one wire system, for example cost, reliability and other. But there is a problem as well, connected to reactive power in both systems. This article proposes explanation of reactive power emergence in systems SWER, three-phase and in their one wire versions.展开更多
In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink powe...This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma ...This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma initiation in JT-60SA. From the simulation using the "PSCAD/EMTDC" code, it is found that these control methods can drastically reduce the reac- tive power induced by the four units of the "Booster PS". In addition, the voltage fluctuation of the motor-generator connected to the "Booster PS" is expected to be suppressed. This can also contribute to achieve stable control of the JT-60SA magnet power supplies.展开更多
This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structura...This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structural characteristics of the network are derived from the Schur complement of the partitioned Y-admittance matrix using circuit theory representations. Results show that topologically strong networks, operating close to the upper voltage limit could be made to increase their loadability margin by locating reactive power compensators close to generator sources, whereas topologically weak (ill conditioned) networks could be made to operate within the feasible operating limits by locating reactive power compensators on buses farther from generator sources.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper a...With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper analyzed how the voltage stability was influenced by different reactive power injection based on the simplified L-indicator of on-line voltage stability monitoring. According to the basic differential property of the simplified L-indicator, a general and normative analytical algorithm about reactive power optimization was deduced. The analytical algorithm can calculate the load node injected reactive power, and then the network can run in the optimal steady state on the basis of the calculation results. According to the simulation results of IEEE-14, IEEE-30, IEEE-57 and IEEE-118, the feasibility and effectiveness of the proposed algorithm to improve voltage stability and reduce the risk of grid collapse were verified.展开更多
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is...In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.展开更多
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
基金This work was partly supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant No.J2022095.
文摘Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed.The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment.For the non-convergence power flow,the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes by node type switching.And the quantified reactive power non-convergence index is acquired.Then,the action space and reward value of deep reinforcement learning are reasonably designed and the adjustment strategy is obtained by taking the reactive power non-convergence index as the algorithm state space.Finally,the effectiveness of the power flow convergence adjustment algorithm is verified by an actual power grid system in a province.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
文摘This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
文摘The main goal of this article is to compare traditional three phase system with one wire three-phase system. There are several obvious advantages of one wire system, for example cost, reliability and other. But there is a problem as well, connected to reactive power in both systems. This article proposes explanation of reactive power emergence in systems SWER, three-phase and in their one wire versions.
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
文摘This paper first discusses the operating principle of instantaneous reactive power theory. Then, the theory is introduced into shunt active power filter and its control scheme is studied. Finally, Matlab/Simulink power system toolbox is used to simulate the system. In the simulation model, as the most common harmonic source, 3-phase thyristor bridge rectifier circuit is constructed. The simulation results before and after the shunt active filter was switched to the system corresponding to different firing angles of the thyristors are presented and analyzed, which demonstrate the practicability and reliability of the proposed shunt active filter scheme.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
文摘Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
基金supported within the framework of the "Broader Approach Internationals Agreement"
文摘This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma initiation in JT-60SA. From the simulation using the "PSCAD/EMTDC" code, it is found that these control methods can drastically reduce the reac- tive power induced by the four units of the "Booster PS". In addition, the voltage fluctuation of the motor-generator connected to the "Booster PS" is expected to be suppressed. This can also contribute to achieve stable control of the JT-60SA magnet power supplies.
文摘This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structural characteristics of the network are derived from the Schur complement of the partitioned Y-admittance matrix using circuit theory representations. Results show that topologically strong networks, operating close to the upper voltage limit could be made to increase their loadability margin by locating reactive power compensators close to generator sources, whereas topologically weak (ill conditioned) networks could be made to operate within the feasible operating limits by locating reactive power compensators on buses farther from generator sources.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.
文摘With the power grid load increasing, the problem of grid voltage stability is increasingly prominent, and the possibility of voltage instability is also growing. In order to improve the voltage stability, this paper analyzed how the voltage stability was influenced by different reactive power injection based on the simplified L-indicator of on-line voltage stability monitoring. According to the basic differential property of the simplified L-indicator, a general and normative analytical algorithm about reactive power optimization was deduced. The analytical algorithm can calculate the load node injected reactive power, and then the network can run in the optimal steady state on the basis of the calculation results. According to the simulation results of IEEE-14, IEEE-30, IEEE-57 and IEEE-118, the feasibility and effectiveness of the proposed algorithm to improve voltage stability and reduce the risk of grid collapse were verified.
基金supported by the National Natural Science Foundation of China(52177081).
文摘In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.