期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis of burnup performance and temperature coefficient for a small modular molten‑salt reactor started with plutonium 被引量:4
1
作者 Xue‑Chao Zhao Yang Zou +1 位作者 Rui Yan Xiang‑Zhou Cai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第1期178-189,共12页
In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched ... In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel.By exploiting plutonium as the starting fuel and thorium as the fertile fuel,the high-purity^(233)U produced can be separated from the spent fuel by fluorination volatilization.Therefore,the molten salt reactor started with plutonium can be designed as a^(233)U breeder with the burning plutonium extracted from a pressurized water reactor(PWR).Combining these advantages,the study of the physical properties of plutonium-activated salt reactors is attractive.This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium(SM-MSR-Pu).The neutron spectra,^(233)U production,plutonium incineration,minor actinide(MA)residues,and temperature reactivity coefficients for different fuel salt volume fractions(VF)and hexagon pitch(P)sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu.Based on the comparative analysis results of the burn-up calculation,a lower VF and larger P size are more beneficial for improving the burnup performance.However,from a passive safety perspective,a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient.Therefore,an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible,and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu.In a comprehensive consideration,P=20 cm and VF=20%are considered to be relatively balanced design parameters.Based on the fuel off-line batching scheme,a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ^(233)U,incinerate 98.29 kg of plutonium,and accumulate 14.70 kg of MAs per year,and the temperature reactivity coefficient can always be lower than−4.0pcm/K. 展开更多
关键词 Molten salt fuel Incinerate plutonium 233U production temperature reactivity coefficient
下载PDF
Assembly-level analysis on temperature coefficient of reactivity in a graphite-moderated fuel salt reactor fueled with low-enriched uranium 被引量:1
2
作者 Xiao-Xiao Li De-Yang Cui +3 位作者 Chun-Yan Zou Jian-Hui Wu Xiang-Zhou Cai Jin-Gen Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期67-84,共18页
To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coef... To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended. 展开更多
关键词 Molten salt reactor temperature coefficient of reactivity Four-factor formula
下载PDF
Enhancement of the Hydrogen Storage Properties of Mg/C Nanocomposites Prepared by Reactive Milling with Molybdenum 被引量:1
3
作者 韩宗盈 周仕学 +2 位作者 CHEN Haipeng NIU Haili WANG Naifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期299-304,共6页
The effect of Mo on the morphology, crystal structure and hydrogen sorption properties of Mg/C composites prepared by reactive milling was studied. Transmission electron microscopic(TEM) observation shows that Mg/C ... The effect of Mo on the morphology, crystal structure and hydrogen sorption properties of Mg/C composites prepared by reactive milling was studied. Transmission electron microscopic(TEM) observation shows that Mg/C composites prepared with the addition of Mo are of nanoscale with particle size about 20-120 nm after 3 h of milling under 1 MPaH2. MgH2 of tetrahedral crystal structure predominates in the materials with the geometric shape of oblique hexagonal prism. From X-ray diffraction(XRD) and hydrogen content studies, Mo and crystallitic carbon have a synergistic effect on promoting the hydrogenation rate in the reactive milling process. From differential scanning calorimetric(DSC) studies, the dehydrogenation peak temperature of the Mg/C materials with Mo is lowered to 299-340 ℃. 展开更多
关键词 magnesium hydride reactive milling hydrogenation rate dehydrogenation temperature
下载PDF
Experimental Instrumentation for Measurement of Reactivity Temperature and Voiding Effects at Zero Power Research Reactors
4
作者 Tomas Bily Lubomir Sklenka 《Journal of Energy and Power Engineering》 2013年第12期2396-2403,共8页
The paper describes the instrumentation for studying temperature and void reactivity effects that were developed at VR-I zero power reactor. Further are described its operational parameters, fields and ways of its uti... The paper describes the instrumentation for studying temperature and void reactivity effects that were developed at VR-I zero power reactor. Further are described its operational parameters, fields and ways of its utilization as well as issues connected to its implementation into the reactor core. 展开更多
关键词 temperature reactivity effect void reactivity effect zero power reactor reactor experiments VR-1 reactor.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部