The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie'...The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie's cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.展开更多
With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and ...With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and the tendency of nuclear power technology development in the future. The proposals put forward in this paper include choosing and introducing GW-class advanced PWR as main reactors, carrying out self-supporting projects and technical transfer negotiations, in addition, promoting the design of the advanced generation-Ⅱ PWR and initiating small-scaled construction. The ultimate target is to catch up with the world advanced level by means of technical upgrading and recreation based on technology importation and assimilation.展开更多
An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configur...An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.展开更多
A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and c...A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.展开更多
文摘The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie's cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.
文摘With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and the tendency of nuclear power technology development in the future. The proposals put forward in this paper include choosing and introducing GW-class advanced PWR as main reactors, carrying out self-supporting projects and technical transfer negotiations, in addition, promoting the design of the advanced generation-Ⅱ PWR and initiating small-scaled construction. The ultimate target is to catch up with the world advanced level by means of technical upgrading and recreation based on technology importation and assimilation.
文摘An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.
基金supported by the National Natural Science Foundation of China (No. 51208231)
文摘A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.