Recently, a new type of Radio Frequency IDentification (RFID) system with mobile readers is introduced. In such a system, it is more desirable for mobile readers to identify tags without a back-end server, and thus ...Recently, a new type of Radio Frequency IDentification (RFID) system with mobile readers is introduced. In such a system, it is more desirable for mobile readers to identify tags without a back-end server, and thus it is frequently referred as a serverless mobile RFID system. In this paper, we formalize a serverless mobile RFID system model and propose a new encryption-based system that preserves the privacy of both tags and readers in the model. In addition, we define a new adversary model for the system model and show the security of the proposed system. Throughout comparisons between ours and the other alternatives, we show that our proposed system provides a stronger reader privacy and robustness against a reader forgery attack than the competitors.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi...This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.展开更多
Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced...Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Facility management and maintenance of the Thermal-Energy-Storage Air-Conditioning(TES-AC)system is a tedious task at a large scale mainly due to the charging load that can increase energy consumption if needed to be ...Facility management and maintenance of the Thermal-Energy-Storage Air-Conditioning(TES-AC)system is a tedious task at a large scale mainly due to the charging load that can increase energy consumption if needed to be charged at peak hours.Besides,maintenance of TES-AC at a large scale gets complex as it contains many sensor data.By utilizing deep learning techniques on the sensor data,charging load prediction can be made possible,so facility managers can prepare in advance.However,a deep learning-based application will be unusable if it is not deployed in a user-friendly manner where facility managers can benefit from this application.Hence,this research focuses on gathering design guidelines for a deep learning-based application and further validates the design considerations with a developed application for efficient human-computer interaction through qualitative analysis.The approach taken to gather design guidelines demonstrated a positive correlation between expert-suggested features and the user-friendly aspect of the application as 67.08%of participants found the features suggested by experts to be most satisfactory.Furthermore,it evaluates user satisfaction with the advanced developed application for TES-AC according to the gathered design guidelines.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory is a green-field vacuum ultraviolet and soft X-ray diffraction-limited storage ring light source with a beam energy of 2...The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory is a green-field vacuum ultraviolet and soft X-ray diffraction-limited storage ring light source with a beam energy of 2.2 GeV and emittance goal of less than 100 pm rad.Inspired by the ESRF-EBS hybrid multi-bend achromat(HMBA),SLS-2,and Diamond-II lattices,we have proposed and designed a modified H6BA lattice as the baseline lattice of the HALF storage ring with 20 identical cells and a natural emittance of approximately 86 pm rad.In this paper,three other types of HMBA lattices including two H7BA lattices and a H6BA lattice are designed for HALF with the same number of cells.The main storage ring proper-ties of these four HMBA lattices are compared.Because the intra-beam scattering(IBS)effect is significant in the HALF storage ring,we calculate and compare the equilibrium emittances of the four lattices with IBS included.These comparisons show that the present modified H6BA lattice,which has a relatively low equilibrium emittance and more straight sections,is preferred for the HALF storage ring after a comprehensive consideration.展开更多
In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to...In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to the scientific community,has garnered significant attention worldwide.Researchers have begun to design and build DLSRs.Among various DLSR proposals,the hybrid multibend achromat(H-MBA)lattice enables sextupole strengths to be maintained at a reasonable level when minimizing the emittance;hence,it has been adopted in many DLSR designs.Based on the H-7BA lattice,the design of the Advanced Photon Source Upgrade Project(APS-U)can effectively reduce emittance by replacing six quadrupoles with anti-bends.Herein,we discuss the feasibility of designing an APS-U-type H-MBA lattice for the Southern Advanced Photon Source,a mid-energy DLSR light source with ultralow emittance that has been proposed to be built adjacent to the China Spallation Neutron Source.Both linear and nonlinear dynamics are optimized to obtain a detailed design of this type of lattice.The emittance is minimized,while a sufficiently large dynamic aperture(DA)and momentum acceptance(MA)are maintained.A design comprising 36 APS-U type H-7BAs,with an energy of 3 GeV and a circumference of 972 m,is achieved.The horizontal natural emittance is 20 pm·rad,with a horizontal DA of 5.8 mm,a vertical DA of 4.5 mm,and an MA of 4%,as well as a long longitudinal damping time of 120 ms.Subsequently,a few modifications are performed based on the APS-U-type lattice to reduce the maximum value of damping time from 120 to 44 ms while maintaining other performance parameters at the same level.展开更多
SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desal...SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desalinated water concurrently, which is sufficient for 100,000 residents. SMART technology is a sensible mixture of new innovative design features and proven technologies through a PWR. The enhancement of safety and reliability is realized by incorporating inherent safety features and reliable passive safety systems. The improvement in the economics is achieved through system simplification, component modularization, construction time reduction, and increased plant availability. All technologies and design features implemented into SMART have been proven in industries and/or qualified through the SMART design verification program including comprehensive test and experiments. The full scope of the safety analyses carried out to confirm that the inherent safety-improvement design characteristics and safety systems of SMART ensure reactor safety. After a thorough licensing review, SDA (standard design approval) for SMART was granted on July 4th, 2012 by the Korea NSSC (Nuclear Safety and Security Commission). This marks the first license for an integral-type reactor in the world. This paper presents the SMART characteristics, safety features and technology validation. The licensing process of SMART is also described.展开更多
Smart wearables equipped with integrated flexible actuators possess the ability to autonomously respond and adapt to changes in the environment.Fibrous textiles have been recognised as promising platforms for integrat...Smart wearables equipped with integrated flexible actuators possess the ability to autonomously respond and adapt to changes in the environment.Fibrous textiles have been recognised as promising platforms for integrating flexible actuators and wearables owing to their superior body compliance,lightweight nature,and programmable architectures.Various studies related to textile actuators in smart wearables have been recently reported.However,the review focusing on the advanced design of these textile actuator technologies for smart wearables is lacking.Herein,a timely and thorough review of the progress achieved in this field over the past five years is presented.This review focuses on the advanced design concepts for textile actuators in smart wearables,covering functional materials,innovative architecture configurations,external stimuli,and their applications in smart wearables.The primary aspects focus on actuating materials,formation techniques of textile architecture,actuating behaviour and performance metrics of textile actuators,various applications in smart wearables,and the design challenges for next-generation smart wearables.Ultimately,conclusive perspectives are highlighted.展开更多
基金Supported in part by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program (No. NIPA-2012-H0301-12-4004)supervised by the NIPA (National IT Industry Promotion Agency)+1 种基金supported in part by US National Science Foundation (NSF) CREST (No. HRD-0833184)US Army Research Office (ARO) (No.W911NF-0810510)
文摘Recently, a new type of Radio Frequency IDentification (RFID) system with mobile readers is introduced. In such a system, it is more desirable for mobile readers to identify tags without a back-end server, and thus it is frequently referred as a serverless mobile RFID system. In this paper, we formalize a serverless mobile RFID system model and propose a new encryption-based system that preserves the privacy of both tags and readers in the model. In addition, we define a new adversary model for the system model and show the security of the proposed system. Throughout comparisons between ours and the other alternatives, we show that our proposed system provides a stronger reader privacy and robustness against a reader forgery attack than the competitors.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
基金The study was financially supported by the key project of Science and Technology Commission of Shanghai Local Gov-ernment (No. 015211010), the National Natural Science Foundation of China (No. 50171038) and the China-Belgium bi-lateral project (No. 2001-242).
文摘Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
文摘Facility management and maintenance of the Thermal-Energy-Storage Air-Conditioning(TES-AC)system is a tedious task at a large scale mainly due to the charging load that can increase energy consumption if needed to be charged at peak hours.Besides,maintenance of TES-AC at a large scale gets complex as it contains many sensor data.By utilizing deep learning techniques on the sensor data,charging load prediction can be made possible,so facility managers can prepare in advance.However,a deep learning-based application will be unusable if it is not deployed in a user-friendly manner where facility managers can benefit from this application.Hence,this research focuses on gathering design guidelines for a deep learning-based application and further validates the design considerations with a developed application for efficient human-computer interaction through qualitative analysis.The approach taken to gather design guidelines demonstrated a positive correlation between expert-suggested features and the user-friendly aspect of the application as 67.08%of participants found the features suggested by experts to be most satisfactory.Furthermore,it evaluates user satisfaction with the advanced developed application for TES-AC according to the gathered design guidelines.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
基金the Fundamental Research Funds for the Central Universities(No.WK2310000107)the National Key Research and Development Program of China(No.2016YFA0402000)National Natural Science Foundation of China(Nos.12205299,11875259,12105284).
文摘The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory is a green-field vacuum ultraviolet and soft X-ray diffraction-limited storage ring light source with a beam energy of 2.2 GeV and emittance goal of less than 100 pm rad.Inspired by the ESRF-EBS hybrid multi-bend achromat(HMBA),SLS-2,and Diamond-II lattices,we have proposed and designed a modified H6BA lattice as the baseline lattice of the HALF storage ring with 20 identical cells and a natural emittance of approximately 86 pm rad.In this paper,three other types of HMBA lattices including two H7BA lattices and a H6BA lattice are designed for HALF with the same number of cells.The main storage ring proper-ties of these four HMBA lattices are compared.Because the intra-beam scattering(IBS)effect is significant in the HALF storage ring,we calculate and compare the equilibrium emittances of the four lattices with IBS included.These comparisons show that the present modified H6BA lattice,which has a relatively low equilibrium emittance and more straight sections,is preferred for the HALF storage ring after a comprehensive consideration.
基金This work was supported by the National Natural Science Foundation of China(No.11922512)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y201904)the Guangdong Basic and Applied Basic Research Foundation—Guangdong Dongguan Joint Foundation(No.2019B1515120069).
文摘In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to the scientific community,has garnered significant attention worldwide.Researchers have begun to design and build DLSRs.Among various DLSR proposals,the hybrid multibend achromat(H-MBA)lattice enables sextupole strengths to be maintained at a reasonable level when minimizing the emittance;hence,it has been adopted in many DLSR designs.Based on the H-7BA lattice,the design of the Advanced Photon Source Upgrade Project(APS-U)can effectively reduce emittance by replacing six quadrupoles with anti-bends.Herein,we discuss the feasibility of designing an APS-U-type H-MBA lattice for the Southern Advanced Photon Source,a mid-energy DLSR light source with ultralow emittance that has been proposed to be built adjacent to the China Spallation Neutron Source.Both linear and nonlinear dynamics are optimized to obtain a detailed design of this type of lattice.The emittance is minimized,while a sufficiently large dynamic aperture(DA)and momentum acceptance(MA)are maintained.A design comprising 36 APS-U type H-7BAs,with an energy of 3 GeV and a circumference of 972 m,is achieved.The horizontal natural emittance is 20 pm·rad,with a horizontal DA of 5.8 mm,a vertical DA of 4.5 mm,and an MA of 4%,as well as a long longitudinal damping time of 120 ms.Subsequently,a few modifications are performed based on the APS-U-type lattice to reduce the maximum value of damping time from 120 to 44 ms while maintaining other performance parameters at the same level.
文摘SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 t of desalinated water concurrently, which is sufficient for 100,000 residents. SMART technology is a sensible mixture of new innovative design features and proven technologies through a PWR. The enhancement of safety and reliability is realized by incorporating inherent safety features and reliable passive safety systems. The improvement in the economics is achieved through system simplification, component modularization, construction time reduction, and increased plant availability. All technologies and design features implemented into SMART have been proven in industries and/or qualified through the SMART design verification program including comprehensive test and experiments. The full scope of the safety analyses carried out to confirm that the inherent safety-improvement design characteristics and safety systems of SMART ensure reactor safety. After a thorough licensing review, SDA (standard design approval) for SMART was granted on July 4th, 2012 by the Korea NSSC (Nuclear Safety and Security Commission). This marks the first license for an integral-type reactor in the world. This paper presents the SMART characteristics, safety features and technology validation. The licensing process of SMART is also described.
基金funding support(Project No.G-YWA2,1-YXAK,and 1-WZ1Y)of this work.
文摘Smart wearables equipped with integrated flexible actuators possess the ability to autonomously respond and adapt to changes in the environment.Fibrous textiles have been recognised as promising platforms for integrating flexible actuators and wearables owing to their superior body compliance,lightweight nature,and programmable architectures.Various studies related to textile actuators in smart wearables have been recently reported.However,the review focusing on the advanced design of these textile actuator technologies for smart wearables is lacking.Herein,a timely and thorough review of the progress achieved in this field over the past five years is presented.This review focuses on the advanced design concepts for textile actuators in smart wearables,covering functional materials,innovative architecture configurations,external stimuli,and their applications in smart wearables.The primary aspects focus on actuating materials,formation techniques of textile architecture,actuating behaviour and performance metrics of textile actuators,various applications in smart wearables,and the design challenges for next-generation smart wearables.Ultimately,conclusive perspectives are highlighted.