In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical...In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.展开更多
Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to cont...Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.展开更多
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ...In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.展开更多
The intent of this paper is to schedule short-term hydrothermal system probabilistically considering stochastic operating cost curves for thermal power generation units and uncertainties in load demand and reservoir w...The intent of this paper is to schedule short-term hydrothermal system probabilistically considering stochastic operating cost curves for thermal power generation units and uncertainties in load demand and reservoir water inflows. Therefore, the stochastic multi-objective hydrothermal generation scheduling problem is formulated with explicit recognition of uncertainties in the system production cost coefficients and system load, which are treated as random variable. Fuzzy methodology has been exploited for solving a decision making problem involving multiplicity of objectives and selection criterion for best compromised solution. A real-coded genetic algorithm with arithmetic-average-bound-blend crossover and wavelet mutation operator is applied to solve short-term variable-head hydrothermal scheduling problem. Initial feasible solution has been obtained by implementing the random heuristic search. The search is performed within the operating generation limits. Equality constraints that satisfy the demand during each time interval are considered by introducing a slack thermal generating unit for each time interval. Whereas the equality constraint which satisfies the consumption of available water to its full extent for the whole scheduling period is considered by introducing slack hydro generating unit for a particular time interval. Operating limit violation by slack hydro and slack thermal generating unit is taken care using exterior penalty method. The effectiveness of the proposed method is demonstrated on two sample systems.展开更多
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使...针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。展开更多
文摘In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.
文摘Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.
文摘In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.
文摘The intent of this paper is to schedule short-term hydrothermal system probabilistically considering stochastic operating cost curves for thermal power generation units and uncertainties in load demand and reservoir water inflows. Therefore, the stochastic multi-objective hydrothermal generation scheduling problem is formulated with explicit recognition of uncertainties in the system production cost coefficients and system load, which are treated as random variable. Fuzzy methodology has been exploited for solving a decision making problem involving multiplicity of objectives and selection criterion for best compromised solution. A real-coded genetic algorithm with arithmetic-average-bound-blend crossover and wavelet mutation operator is applied to solve short-term variable-head hydrothermal scheduling problem. Initial feasible solution has been obtained by implementing the random heuristic search. The search is performed within the operating generation limits. Equality constraints that satisfy the demand during each time interval are considered by introducing a slack thermal generating unit for each time interval. Whereas the equality constraint which satisfies the consumption of available water to its full extent for the whole scheduling period is considered by introducing slack hydro generating unit for a particular time interval. Operating limit violation by slack hydro and slack thermal generating unit is taken care using exterior penalty method. The effectiveness of the proposed method is demonstrated on two sample systems.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.
文摘针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。