动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方...动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方面,在清洗异常数据时,保留了实车数据中合理的强噪声数据,保证了数据的真实性。特征选择方面,选择容量增量曲线峰值和对应的电压以及基于安时积分得到的小片段充电容量数据。算法方面,针对真实数据的弱时序性问题,利用反向传播-自适应推进(back propagation-adapt boost, BP-AdaBoost)算法进行电池SOH估计的研究。最后,利用同一类型三辆车的数据进行了模型训练、测试和验证,预测结果与长短期记忆-循环神经网络(long short term memory-recurrent neural network, LSTM-RNN)算法对比,BP-AdaBoost算法估计误差更小,平均绝对误差达到0.96%,因此,所提出的方法可以应用于实车电池SOH的高精度估计。展开更多
视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像...视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像位置区域,然后采用AdaBoost算法对预测区域进行脸像检测。该方法在时间维度对AdaBoost算法进行扩展,减小脸像搜索范围,提高检测效率。利用该方法对离线视频文件和CCD图像传感器实时脸像视频进行检测,实验结果表明,与支持向量机、传统AdaBoost和基于优化肤色模型的AdaBoost改进算法相比,ARMA-Boost算法脸像检测准确率高,实时性更好,可以对视频脸像进行快速检测应用。展开更多
文摘动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方面,在清洗异常数据时,保留了实车数据中合理的强噪声数据,保证了数据的真实性。特征选择方面,选择容量增量曲线峰值和对应的电压以及基于安时积分得到的小片段充电容量数据。算法方面,针对真实数据的弱时序性问题,利用反向传播-自适应推进(back propagation-adapt boost, BP-AdaBoost)算法进行电池SOH估计的研究。最后,利用同一类型三辆车的数据进行了模型训练、测试和验证,预测结果与长短期记忆-循环神经网络(long short term memory-recurrent neural network, LSTM-RNN)算法对比,BP-AdaBoost算法估计误差更小,平均绝对误差达到0.96%,因此,所提出的方法可以应用于实车电池SOH的高精度估计。
文摘视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像位置区域,然后采用AdaBoost算法对预测区域进行脸像检测。该方法在时间维度对AdaBoost算法进行扩展,减小脸像搜索范围,提高检测效率。利用该方法对离线视频文件和CCD图像传感器实时脸像视频进行检测,实验结果表明,与支持向量机、传统AdaBoost和基于优化肤色模型的AdaBoost改进算法相比,ARMA-Boost算法脸像检测准确率高,实时性更好,可以对视频脸像进行快速检测应用。