This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers i...This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.展开更多
A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This p...A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.展开更多
文摘This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.
文摘A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers.