A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents...Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents a design and implementation of a real time wireless monitor system for urinary incontinence, which has been applied in two nursing homes in Beijing and Shanghai. We collect real time moisture information by using non-contact humidity sensor designed and manufactured by us. When urinary incontinence, the sensor will send alert to mobile device via Bluetooth. If got the alert, the mobile device will send the alert to relatives of the aged or disabled people and cloud computing platform, through which we can make this information managed and displayed and the paramedic can be informed about the alarm. This paper gives a brief introduction to the framework of this system, the design of the non-contact sensor, the transmission of wireless data and the results of tests.展开更多
This paper presents a novel method of generating a set of texture tiles from samples, which can be seamlessly tiled into arbitrary size textures in real-time. Compared to existing methods, our approach is simpler and ...This paper presents a novel method of generating a set of texture tiles from samples, which can be seamlessly tiled into arbitrary size textures in real-time. Compared to existing methods, our approach is simpler and more advantageous in eliminating visual seams that may exist in each tile of the existing methods, especially when the samples have elaborate features or distinct colors. Texture tiles generated by our approach can be regarded as single-colored tiles on each orthogonal direction border, which are easier for tiling and more suitable for sentence tiling. Experimental results demonstrate the feasibility and effectiveness of our approach.展开更多
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents a design and implementation of a real time wireless monitor system for urinary incontinence, which has been applied in two nursing homes in Beijing and Shanghai. We collect real time moisture information by using non-contact humidity sensor designed and manufactured by us. When urinary incontinence, the sensor will send alert to mobile device via Bluetooth. If got the alert, the mobile device will send the alert to relatives of the aged or disabled people and cloud computing platform, through which we can make this information managed and displayed and the paramedic can be informed about the alarm. This paper gives a brief introduction to the framework of this system, the design of the non-contact sensor, the transmission of wireless data and the results of tests.
基金Supported by the National Natural Science Foundation of China(Grant No.60575023)National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20050359012)+1 种基金the Major Research Project of Natural Science Foundation of Higher Education Institution of Anhui Province(KJ2007A122ZC)Science Research and Development Foundation of Hefei University of Technology of China(Grant No.060504F).
文摘This paper presents a novel method of generating a set of texture tiles from samples, which can be seamlessly tiled into arbitrary size textures in real-time. Compared to existing methods, our approach is simpler and more advantageous in eliminating visual seams that may exist in each tile of the existing methods, especially when the samples have elaborate features or distinct colors. Texture tiles generated by our approach can be regarded as single-colored tiles on each orthogonal direction border, which are easier for tiling and more suitable for sentence tiling. Experimental results demonstrate the feasibility and effectiveness of our approach.