Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domi...An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domino Ring Sampler 4(DRS4) chip, which offers fast sampling speeds up to 5.12 giga samples per second(GSPS) to digitize pulses from front-end detectors. The high-resolution GSPS data is useful for obtaining precise real-time neutron–gamma discrimination results directly in this module. In this study, we have implemented real-time data analysis in a field programmable gate array. Real-time data analysis involves two aspects: digital waveform integral and digital pulse shape discrimination(PSD). It can significantly reduce the system dead time and data rate processed offline. Plastic scintillators(EJ-299-33), which have proven capable of PSD, were adopted as neutron detectors in the experiments. A photomultiplier tube(PMT)(model #XP2020) was coupled to one end of a detector to collect the output light from it. The pulse output from the anode of the PMT was directly passed onto the fast sampling module. The fast pulse sampling module was operated at 1 GSPS and 2 GSPS in these experiments, and the AmBe-241 source was used to examine the neutron–gamma discrimination quality. The PSD results with different sampling rates and energy thresholds were evaluated. The figure of merit(FOM) was used to describe the neutron–gamma discrimination quality. The best FOM value of 0.91 was obtained at 2 GSPS and 1 GSPS sampling rates with an energy threshold of 1.5 MeV_(ee)(electron equivalent).展开更多
The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on t...The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintil...A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.展开更多
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m...To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.展开更多
Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 compon...Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products.展开更多
The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f...The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.展开更多
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DN...Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DNA(nrDNA)sequences,are inadequate for accurate species identification.Skmer,a recently proposed approach that estimates genetic distances among species based on unassembled genome skims,has been proposed to effectively improve species discrimination rate.In this study,we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima(Theaceae)from China.The unassembled reads identified six species,with a species identification rate of 60%,twice as high as previous efforts that used plastid genomes(27.27%).In addition,Skmer was able to identify Schima species with only 0.5sequencing depth,as six species were well-supported with unassembled data sizes as small as 0.5 Gb.These findings demonstrate the potential for Skmer approach in species identification,where nuclear genomic data plays a crucial role.For taxonomically difficult taxa such as Schima,which have diverged recently and have low levels of genetic variation,Skmer is a promising alternative to next generation barcodes.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ...Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences(No.29201707)
文摘An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domino Ring Sampler 4(DRS4) chip, which offers fast sampling speeds up to 5.12 giga samples per second(GSPS) to digitize pulses from front-end detectors. The high-resolution GSPS data is useful for obtaining precise real-time neutron–gamma discrimination results directly in this module. In this study, we have implemented real-time data analysis in a field programmable gate array. Real-time data analysis involves two aspects: digital waveform integral and digital pulse shape discrimination(PSD). It can significantly reduce the system dead time and data rate processed offline. Plastic scintillators(EJ-299-33), which have proven capable of PSD, were adopted as neutron detectors in the experiments. A photomultiplier tube(PMT)(model #XP2020) was coupled to one end of a detector to collect the output light from it. The pulse output from the anode of the PMT was directly passed onto the fast sampling module. The fast pulse sampling module was operated at 1 GSPS and 2 GSPS in these experiments, and the AmBe-241 source was used to examine the neutron–gamma discrimination quality. The PSD results with different sampling rates and energy thresholds were evaluated. The figure of merit(FOM) was used to describe the neutron–gamma discrimination quality. The best FOM value of 0.91 was obtained at 2 GSPS and 1 GSPS sampling rates with an energy threshold of 1.5 MeV_(ee)(electron equivalent).
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.12075308).
文摘The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金partially supported by the National Science and Technology Major Project of Ministry of Science and Technology of China (Grant Nos. 2014GB109003 and 2015GB111002)National Natural Science Foundation of China (Grant Nos. 11375195, 11575184, 11375004 and 11775068)
文摘A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.
基金supported by the Scientific and Technological Innovation 2030 Major Project(2022ZD04019)the Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230303)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023XDNY077)the Beijing Scholars Program(BSP041)。
文摘To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.
基金financial support from the Science Research Program Project for Drug Regulation,Jiangsu Drug Administration,China(Grant No.:202207)the National Drug Standards Revision Project,China(Grant No.:2023Y41)+1 种基金the National Natural Science Foundation of China(Grant No.:22276080)the Foreign Expert Project,China(Grant No.:G2022014096L).
文摘Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products.
基金the Center University(Grant No.B220202013)Qinglan Project of Jiangsu Province(2022).
文摘The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.
基金supported by National Natural Science Foundation of China(No.32070369)the Youth Innovation Promotion Association CAS of China(No.2021393)+1 种基金the Yunnan Revitalization Talent Support Program“Young Talent”Project,the Applied Fundamental Research Foundation of Yunnan Province(202301AT070308)the Fund of Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology(YNPRAEC-2023006).
文摘Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DNA(nrDNA)sequences,are inadequate for accurate species identification.Skmer,a recently proposed approach that estimates genetic distances among species based on unassembled genome skims,has been proposed to effectively improve species discrimination rate.In this study,we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima(Theaceae)from China.The unassembled reads identified six species,with a species identification rate of 60%,twice as high as previous efforts that used plastid genomes(27.27%).In addition,Skmer was able to identify Schima species with only 0.5sequencing depth,as six species were well-supported with unassembled data sizes as small as 0.5 Gb.These findings demonstrate the potential for Skmer approach in species identification,where nuclear genomic data plays a crucial role.For taxonomically difficult taxa such as Schima,which have diverged recently and have low levels of genetic variation,Skmer is a promising alternative to next generation barcodes.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金supported by the Fundamental Research Funds for the Central Universities(WK2470000035)USTC Research Funds of the Double First-Class Initiative(YD2030002007,YD2030002011)+1 种基金the National Natural Science Foundation of China(62222512,12104439,12134014,and 11974335)the Anhui Provincial Natural Science Foundation(2208085J03).
文摘Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.