Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Quantitative real-time PCR(qRT-PCR)has been widely used for gene expression analysis,and selection of reference genes is a key point to obtain accurate results.To find out optimal reference genes for qRT-PCR in Manila...Quantitative real-time PCR(qRT-PCR)has been widely used for gene expression analysis,and selection of reference genes is a key point to obtain accurate results.To find out optimal reference genes for qRT-PCR in Manila clam Ruditapes philippinarum in response to hypoxia,different tissues were used and compared to evaluate the stability of candidate reference genes under low oxygen stress(DO 0.5mgL^(−1) and DO 2.0mgL^(−1))and normal condition(DO 7.5mgL^(−1)).Seven candidate reference genes were selected to evaluate the stability of their expression levels.The reference genes were evaluated by Delta Ct,BestKeeper,NormFinder and geNorm,and then screened by RefFinder calculation.Under hypoxic stress of 0.5mgL^(−1),the most suitable reference gene for gill and hepatopancreas was RPL31,and the optimal reference genes for axe foot and adductor muscle were TUB and HIS,respectively.For hypoxic stress of 2.0mgL^(−1),the most stable reference gene for gill and hepatopancreas was RPL31,and the optimal reference genes for axe foot and adductor muscle were RPS23 and EF1A,respectively.At the normal condition,HIS and EF1A were identified as the optimal internal reference genes in gill and hepatopancreas respectively,and GFRP2 was the best internal reference gene for axe foot and adductor muscle.The present findings will provide important basis for the selection of reference genes for qRT-PCR analysis of gene expression level in bivalves under hypoxic stress,which might be helpful for the analysis of other molluscs too.展开更多
The textile industrial chain all over the world is facing a challenge of differentiating cashmere fiber from mixture of wool and other fibers in case cashmere stocks are adulterated with wool or other fibers. For iden...The textile industrial chain all over the world is facing a challenge of differentiating cashmere fiber from mixture of wool and other fibers in case cashmere stocks are adulterated with wool or other fibers. For identification of cashmere in such mixtures, the development of microchip based real-time PCR technology offers a very sensitive, specific, and accurate solution. The technology has been validated with cashmere and wool samples procured from distant farms, and from cashmere goats and sheep of different age and sex. Model samples with incremental raw cashmere or wool content were tested. The experimentally determined content was found to be comparable to the weighed content of the respective fibers in the samples. This technology may prove a cost cutter since it needs only 1.2 μl of the PCR reagent mix. It is substantially faster than traditional real-time PCR systems for being carried as miniature reaction volume in metal microchip. These features allow faster thermal equilibrium and thermal uniformity over the entire array of microreactors. For routine tests or in commercial set up, the microchips are available as ready-to-run with lyophilized reagents in its microreactors to which only 1 μl of the 10-fold diluted isolated DNA sample is added. The lyophilized microchips offer user-friendly handling in testing laboratories and help minimize human error.展开更多
Two real-time PCR methods for the relative quantitation of DNA from meat species in food samples are described: these methods are applicable for horse in processed beef meat products, and pork in raw/processed beef me...Two real-time PCR methods for the relative quantitation of DNA from meat species in food samples are described: these methods are applicable for horse in processed beef meat products, and pork in raw/processed beef meat products. Test samples were prepared using raw meat admixtures or processed horse/pork in beef food products made to an industry-standard recipe. The methods were subjected to single laboratory method validation, evaluating the performance characteristics of specificity, PCR efficiency and r-squared (r<sup>2</sup>), Limit of Detection (LOD), Limit of Quantitation (LOQ), and precision and trueness. A limited UK-based inter-laboratory trial of the two methods was completed involving four participating laboratories. Full statistical analysis of the data qualified the applicability of the methods for accurate and sensitive trace-level analysis. The methods were deemed fit for purpose for reproducibly distinguishing between adventitious contamination at 0.1% (w/w), the level for further enforcement action at 1% (w/w), and a level representative of deliberate economically motivated adulteration (10% (w/w)). The data provided evidence that the precision of the two methods was applicable for qualitative and quantitative detection at topically important levels of adulteration. This work has added significant value to the current state of the art in quantitative determination of topical meat species adulteration, allowing analysts to distinguish between adventitious contamination and deliberate adulteration. The resulting methods described in this paper can easily be deployed and used by analytical laboratories for controls and due-diligence testing based on standard laboratory equipment.展开更多
[Objective]To investigate the expression of zebrafish vascular endothelial growth factor-2(VEGFR-2) at different developmental stages.[Method]Total RNAs were extracted from 12,24,48,72 and 96 hpf stage zebrafish emb...[Objective]To investigate the expression of zebrafish vascular endothelial growth factor-2(VEGFR-2) at different developmental stages.[Method]Total RNAs were extracted from 12,24,48,72 and 96 hpf stage zebrafish embryos and larvae.Real-time quantitative RT-PCR was performed to examine the expression of VEGFR-2.The data were analyzed by 2^-△△Ct method.[Result]The expression level of VEGFR-2 gene increased gradually from 12 to 72 hpf,and subsequently decreased at 96 hpf.The expression level was lowest at 12 hpf,highest at 72 hpf,and had significant differences when compared with that of other developmental stages.[Conclusion]The expression level of VEGFR-2 increases gradually before blood vessel maturation and decreases as blood vessels mature.展开更多
Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification react...Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.展开更多
[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PC...[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PCR technique,we have determined the copy numbers of the exogenous CYCD3;1 in transgenic Arabidopsis by comparing an endogenous single copy reference gene with CYCD3;1 copy numbers in transgenic plant,meanwhile comparing CYCD3;1 copy numbers between wild plant and transgenic plant.[Results]The exogenous CYCD3;1 copy numbers calculated by this method is identical with results of traditional Southern blot analysis which is highly accurate.[Conclusion]This method is simple,effective and safe for estimating transgene copy numbers.展开更多
With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 ...With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 and spread quickly across the country.It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.Atypical porcine pestivirus(APPV) was first detected in Guangdong Province,China,in 2016,which mainly harms piglets and has a local epidemic situation in southern China.These three diseases have similar clinical symptoms in pig herds,which cause considerable losses to the pig industry.They are difficult to be distinguished only by clinical diagnosis.Therefore,developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.In this study,three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV(5’ UTR),African swine fever virus(ASFV)(B646L),and APPV(5’ UTR),followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.The results showed that the method did not cross-react with other swine pathogens(porcine circovirus type 2(PCV2),porcine reproductive and respiratory syndrome virus(PRRSV),foot-and-mouth disease virus(FMDV),pseudorabies virus(PRV),porcine parvovirus(PPV),and bovine viral diarrhea virus BVDV).The sensitivity results showed that CSFV,ASFV,and APPV could be detected as low as 1 copy μL–1;the repeatability results showed that the intra-assay and interassay coefficient of variation of ASFV,CSFV,and APPV was less than 1%.Twenty-two virus samples were detected by the multiplex real-time PCR,compared with national standard diagnostic and patented method assay for CSF(GB/T 27540–2011),ASF(GB/T 18648–2020),and APPV(CN108611442A),respectively.The sensitivity of this triple real-time PCR for CSFV,ASFV,and APPV was almost the same,and the compliance results were the same(100%).A total of 451 clinical samples were detected,and the results showed that the positive rates of CSFV,ASFV,and APPV were 0.22% (1/451),1.3%(6/451),and 0%(0/451),respectively.This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV,ASFV,and APPV.展开更多
Objective To establish and modify quantitative real-time polymerase chain reaction(qPCR)-based serotyping assays to distinguish 97 pneumococcal serotypes.Methods A database of capsular polysaccharide(cps)loci sequence...Objective To establish and modify quantitative real-time polymerase chain reaction(qPCR)-based serotyping assays to distinguish 97 pneumococcal serotypes.Methods A database of capsular polysaccharide(cps)loci sequences was generated,covering 97 pneumococcal serotypes.Bioinformatics analyses were performed to identify the cps loci structure and target genes related to different pneumococcal serotypes with specific SNPs.A total of 27 novel qPCR serotyping assay primers and probes were established based on qPCR,while 27 recombinant plasmids containing serotype-specific DNA sequence fragments were constructed as reference target sequences to examine the specificity and sensitivity of the qPCR assay.A panel of pneumococcal reference strains was employed to evaluate the capability of pneumococcal serotyping.Results A total of 97 pneumococcal serotyping assays based on qPCR were established and modified,which included 64 serotypes previously reported as well as an additional 33 serotypes.Twenty-seven novel qPCR serotyping target sequences were implemented in the pneumococcal qPCR serotyping system.A total of 97 pneumococcal serotypes,which included 52 individual serotypes and 45 serotypes belonging to 20 serogroups,could not be identified as individual serotypes.The sensitivity of qPCR assays based on 27 target sequences was 1–100 copies/μL.The specificity of the qPCR assays was 100%,which were tested by a panel of 90 serotypes of the pneumococcal reference strains.Conclusion A total of 27 novel qPCR assays were established and modified to analyze 97pneumococcal serotypes.展开更多
Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the pres...Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the present study,a TaqManminor groove binder(TaqMan-MGB)probe-based fluorescence quantitative real-time PCR(qPCR)was successfully developed and used for quantifying H.filipjevi from DNA extracts of soil.The primers and probe designed from the obtained RAPD-SCAR marker fragments of H.filipjevi showed high specificity to H.filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp.,1 Globodera spp.and 3 Pratylenchus spp.The qPCR assay is highly sensitive and provides improved H.filipjevi detection sensitivity of as low as 4^(-3) single second-stage juvenile(J2)DNAs,10^(-3) female DNAs,and 0.01μgμL^(-1) genomic DNAs.A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H.filipjevi in naturally infested field soils.There was a high correlation between the H.filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay.qPCR potentially provides a useful platform for the efficient detection and quantification of H.filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils.展开更多
Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these char...Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.展开更多
Quantitative real-time PCR (qRT-PCR) has become a routine and robust technique for measuring the expression of genes of interest, validating microarray experiments and monitoring biomarkers. However, concerns have b...Quantitative real-time PCR (qRT-PCR) has become a routine and robust technique for measuring the expression of genes of interest, validating microarray experiments and monitoring biomarkers. However, concerns have been raised over the accuracy of qRT-PCR in China as well as in the rest of the world. We have previously used qRT-PCR to study the response of ANR1 and other root-expressed MADS-box genes to fluctuations in the supply of nitrate, phosphate and sulphate under hydroponic growth conditions. In this study, we have used both Northern blotting and qRT-PCR analyses to confirm the nutritional regulation of MADS-box genes in Arabidopsis thaliana and test whether both technologies produce the same results. The information obtained indicated that the qRT-PCR results are consistent with those obtained by Northern blotting hybridization for all the tested root-expressed MADS-box genes, in response to different nitrate, phosphate and sulphate growth conditions. Furthermore, our novel results showed that the expressions of AGL12, AGL18, and AGL19 were all down regulated in response to S and P re-supply in both qRT-PCR and Northern blotting analyses.展开更多
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金supported by research grants from the Science and Technology Innovation Program of the Laoshan Laboratory(No.LSKJ202203803)the National Natural Science Foundation of China(No.32273107)+2 种基金supported by the Central Public-Interest Scientific Institution Basal Research Fund,Yellow Sea Fisheries Research Institute,CAFS(No.20603022022001)the project of Putian Science and Technology Department(No.2021NJJ002)the Shinan District Science and Technology Plan Project(No.2022-2-026-ZH).
文摘Quantitative real-time PCR(qRT-PCR)has been widely used for gene expression analysis,and selection of reference genes is a key point to obtain accurate results.To find out optimal reference genes for qRT-PCR in Manila clam Ruditapes philippinarum in response to hypoxia,different tissues were used and compared to evaluate the stability of candidate reference genes under low oxygen stress(DO 0.5mgL^(−1) and DO 2.0mgL^(−1))and normal condition(DO 7.5mgL^(−1)).Seven candidate reference genes were selected to evaluate the stability of their expression levels.The reference genes were evaluated by Delta Ct,BestKeeper,NormFinder and geNorm,and then screened by RefFinder calculation.Under hypoxic stress of 0.5mgL^(−1),the most suitable reference gene for gill and hepatopancreas was RPL31,and the optimal reference genes for axe foot and adductor muscle were TUB and HIS,respectively.For hypoxic stress of 2.0mgL^(−1),the most stable reference gene for gill and hepatopancreas was RPL31,and the optimal reference genes for axe foot and adductor muscle were RPS23 and EF1A,respectively.At the normal condition,HIS and EF1A were identified as the optimal internal reference genes in gill and hepatopancreas respectively,and GFRP2 was the best internal reference gene for axe foot and adductor muscle.The present findings will provide important basis for the selection of reference genes for qRT-PCR analysis of gene expression level in bivalves under hypoxic stress,which might be helpful for the analysis of other molluscs too.
文摘The textile industrial chain all over the world is facing a challenge of differentiating cashmere fiber from mixture of wool and other fibers in case cashmere stocks are adulterated with wool or other fibers. For identification of cashmere in such mixtures, the development of microchip based real-time PCR technology offers a very sensitive, specific, and accurate solution. The technology has been validated with cashmere and wool samples procured from distant farms, and from cashmere goats and sheep of different age and sex. Model samples with incremental raw cashmere or wool content were tested. The experimentally determined content was found to be comparable to the weighed content of the respective fibers in the samples. This technology may prove a cost cutter since it needs only 1.2 μl of the PCR reagent mix. It is substantially faster than traditional real-time PCR systems for being carried as miniature reaction volume in metal microchip. These features allow faster thermal equilibrium and thermal uniformity over the entire array of microreactors. For routine tests or in commercial set up, the microchips are available as ready-to-run with lyophilized reagents in its microreactors to which only 1 μl of the 10-fold diluted isolated DNA sample is added. The lyophilized microchips offer user-friendly handling in testing laboratories and help minimize human error.
文摘Two real-time PCR methods for the relative quantitation of DNA from meat species in food samples are described: these methods are applicable for horse in processed beef meat products, and pork in raw/processed beef meat products. Test samples were prepared using raw meat admixtures or processed horse/pork in beef food products made to an industry-standard recipe. The methods were subjected to single laboratory method validation, evaluating the performance characteristics of specificity, PCR efficiency and r-squared (r<sup>2</sup>), Limit of Detection (LOD), Limit of Quantitation (LOQ), and precision and trueness. A limited UK-based inter-laboratory trial of the two methods was completed involving four participating laboratories. Full statistical analysis of the data qualified the applicability of the methods for accurate and sensitive trace-level analysis. The methods were deemed fit for purpose for reproducibly distinguishing between adventitious contamination at 0.1% (w/w), the level for further enforcement action at 1% (w/w), and a level representative of deliberate economically motivated adulteration (10% (w/w)). The data provided evidence that the precision of the two methods was applicable for qualitative and quantitative detection at topically important levels of adulteration. This work has added significant value to the current state of the art in quantitative determination of topical meat species adulteration, allowing analysts to distinguish between adventitious contamination and deliberate adulteration. The resulting methods described in this paper can easily be deployed and used by analytical laboratories for controls and due-diligence testing based on standard laboratory equipment.
基金Supported by National Natural Science Foundation of Shandong Province (No. SY2008C179)~~
文摘[Objective]To investigate the expression of zebrafish vascular endothelial growth factor-2(VEGFR-2) at different developmental stages.[Method]Total RNAs were extracted from 12,24,48,72 and 96 hpf stage zebrafish embryos and larvae.Real-time quantitative RT-PCR was performed to examine the expression of VEGFR-2.The data were analyzed by 2^-△△Ct method.[Result]The expression level of VEGFR-2 gene increased gradually from 12 to 72 hpf,and subsequently decreased at 96 hpf.The expression level was lowest at 12 hpf,highest at 72 hpf,and had significant differences when compared with that of other developmental stages.[Conclusion]The expression level of VEGFR-2 increases gradually before blood vessel maturation and decreases as blood vessels mature.
基金Supported by National Natural Science Foundation of China(31260406)Natural Science Fund Project of Inner Mongolia(2012MS0502)~~
文摘Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.
基金Supported by National Natural Science Foundation Project(30270086)~~
文摘[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PCR technique,we have determined the copy numbers of the exogenous CYCD3;1 in transgenic Arabidopsis by comparing an endogenous single copy reference gene with CYCD3;1 copy numbers in transgenic plant,meanwhile comparing CYCD3;1 copy numbers between wild plant and transgenic plant.[Results]The exogenous CYCD3;1 copy numbers calculated by this method is identical with results of traditional Southern blot analysis which is highly accurate.[Conclusion]This method is simple,effective and safe for estimating transgene copy numbers.
基金supported by the National Natural Science Foundation of China (31872484) to Zhang Qianyithe Non-profit Key Program of Veterinary Drug Industry from China Institute of Veterinary Drug Control (GY202011) to Xia Yingju。
文摘With the implementation of the C-strain vaccine,classical swine fever(CSF) has been under control in China,which is currently in a chronic atypical epidemic situation.African swine fever(ASF) emerged in China in 2018 and spread quickly across the country.It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.Atypical porcine pestivirus(APPV) was first detected in Guangdong Province,China,in 2016,which mainly harms piglets and has a local epidemic situation in southern China.These three diseases have similar clinical symptoms in pig herds,which cause considerable losses to the pig industry.They are difficult to be distinguished only by clinical diagnosis.Therefore,developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.In this study,three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV(5’ UTR),African swine fever virus(ASFV)(B646L),and APPV(5’ UTR),followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.The results showed that the method did not cross-react with other swine pathogens(porcine circovirus type 2(PCV2),porcine reproductive and respiratory syndrome virus(PRRSV),foot-and-mouth disease virus(FMDV),pseudorabies virus(PRV),porcine parvovirus(PPV),and bovine viral diarrhea virus BVDV).The sensitivity results showed that CSFV,ASFV,and APPV could be detected as low as 1 copy μL–1;the repeatability results showed that the intra-assay and interassay coefficient of variation of ASFV,CSFV,and APPV was less than 1%.Twenty-two virus samples were detected by the multiplex real-time PCR,compared with national standard diagnostic and patented method assay for CSF(GB/T 27540–2011),ASF(GB/T 18648–2020),and APPV(CN108611442A),respectively.The sensitivity of this triple real-time PCR for CSFV,ASFV,and APPV was almost the same,and the compliance results were the same(100%).A total of 451 clinical samples were detected,and the results showed that the positive rates of CSFV,ASFV,and APPV were 0.22% (1/451),1.3%(6/451),and 0%(0/451),respectively.This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV,ASFV,and APPV.
基金supported by a grant from Beijing Municipal Natural Science Foundation [L212011]National Institute for Communicable Disease Control and Prevention,Chinese Center for Disease Control and Prevention [131031102000210003&102393230020020000002]。
文摘Objective To establish and modify quantitative real-time polymerase chain reaction(qPCR)-based serotyping assays to distinguish 97 pneumococcal serotypes.Methods A database of capsular polysaccharide(cps)loci sequences was generated,covering 97 pneumococcal serotypes.Bioinformatics analyses were performed to identify the cps loci structure and target genes related to different pneumococcal serotypes with specific SNPs.A total of 27 novel qPCR serotyping assay primers and probes were established based on qPCR,while 27 recombinant plasmids containing serotype-specific DNA sequence fragments were constructed as reference target sequences to examine the specificity and sensitivity of the qPCR assay.A panel of pneumococcal reference strains was employed to evaluate the capability of pneumococcal serotyping.Results A total of 97 pneumococcal serotyping assays based on qPCR were established and modified,which included 64 serotypes previously reported as well as an additional 33 serotypes.Twenty-seven novel qPCR serotyping target sequences were implemented in the pneumococcal qPCR serotyping system.A total of 97 pneumococcal serotypes,which included 52 individual serotypes and 45 serotypes belonging to 20 serogroups,could not be identified as individual serotypes.The sensitivity of qPCR assays based on 27 target sequences was 1–100 copies/μL.The specificity of the qPCR assays was 100%,which were tested by a panel of 90 serotypes of the pneumococcal reference strains.Conclusion A total of 27 novel qPCR assays were established and modified to analyze 97pneumococcal serotypes.
基金financially supported by the National Natural Science Foundation of China(31972247)the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(ASTIP-2016-IPP-04)the Special Fund for Agro-scientific Research in the Public Interest,China(201503114)。
文摘Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the present study,a TaqManminor groove binder(TaqMan-MGB)probe-based fluorescence quantitative real-time PCR(qPCR)was successfully developed and used for quantifying H.filipjevi from DNA extracts of soil.The primers and probe designed from the obtained RAPD-SCAR marker fragments of H.filipjevi showed high specificity to H.filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp.,1 Globodera spp.and 3 Pratylenchus spp.The qPCR assay is highly sensitive and provides improved H.filipjevi detection sensitivity of as low as 4^(-3) single second-stage juvenile(J2)DNAs,10^(-3) female DNAs,and 0.01μgμL^(-1) genomic DNAs.A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H.filipjevi in naturally infested field soils.There was a high correlation between the H.filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay.qPCR potentially provides a useful platform for the efficient detection and quantification of H.filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils.
基金The National High Technology Research&Development Program of China under contract No.2012AA10A411the National Natural Science Foundation of China under contract Nos 41176151 and 41276177
文摘Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.
基金supported by the Fundamental Research Funds for the Central Universities of China(2009QNA6023)the International Scientific and Technological Cooperation Project of Ministry of Science and Technology of China (2010DFA34430)
文摘Quantitative real-time PCR (qRT-PCR) has become a routine and robust technique for measuring the expression of genes of interest, validating microarray experiments and monitoring biomarkers. However, concerns have been raised over the accuracy of qRT-PCR in China as well as in the rest of the world. We have previously used qRT-PCR to study the response of ANR1 and other root-expressed MADS-box genes to fluctuations in the supply of nitrate, phosphate and sulphate under hydroponic growth conditions. In this study, we have used both Northern blotting and qRT-PCR analyses to confirm the nutritional regulation of MADS-box genes in Arabidopsis thaliana and test whether both technologies produce the same results. The information obtained indicated that the qRT-PCR results are consistent with those obtained by Northern blotting hybridization for all the tested root-expressed MADS-box genes, in response to different nitrate, phosphate and sulphate growth conditions. Furthermore, our novel results showed that the expressions of AGL12, AGL18, and AGL19 were all down regulated in response to S and P re-supply in both qRT-PCR and Northern blotting analyses.