Particles may rebound from a substrate surface during cold spraying, which affects the quality of the coating. In this paper, the rebound phenomenon and its consequences on deposition behavior have been analyzed using...Particles may rebound from a substrate surface during cold spraying, which affects the quality of the coating. In this paper, the rebound phenomenon and its consequences on deposition behavior have been analyzed using the finite element analysis software ANSYS/LS-DYNA version 970. In a range of particle velocities of 50-1000 m/s, increases of the impact velocity caused a rapid decline of the rebound coefficient R to a low point Rmin. After that, R began to rise slowly. Then the effect of the impact velocities and material properties on the rebound phenomenon were analyzed. Both the material strength and density influenced this rebound phenomenon. Four stages of the impact process and a model of strain distribution were proposed in detail to explain the rebound phenomenon.展开更多
基金supported by the National Natural Science Foundation of China (Nos.50871019 and 50874009)
文摘Particles may rebound from a substrate surface during cold spraying, which affects the quality of the coating. In this paper, the rebound phenomenon and its consequences on deposition behavior have been analyzed using the finite element analysis software ANSYS/LS-DYNA version 970. In a range of particle velocities of 50-1000 m/s, increases of the impact velocity caused a rapid decline of the rebound coefficient R to a low point Rmin. After that, R began to rise slowly. Then the effect of the impact velocities and material properties on the rebound phenomenon were analyzed. Both the material strength and density influenced this rebound phenomenon. Four stages of the impact process and a model of strain distribution were proposed in detail to explain the rebound phenomenon.