During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas d...During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.展开更多
Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been impleme...Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been implemented in the Changjiang River estuary in recent years:the Xincun Shoal reclamation project(RP-XCS),the Qingcao Shoal reclamation project(RP-QCS),the Eastern Hengsha Shoal reclamation project(RP-EHS),and the Nanhui Shoal reclamation project(RP-NHS).The effects of the four reclamation projects and each project on the saltwater intrusion and water resources in the Changjiang River estuary were simulated in a 3D numerical model.Results show that for a multichannel estuary,local reclamation projects change the local topography and water diversion ratio(WDR)between channels and influence water and salt transport and freshwater utilization in the estuary.During spring tide,under the cumulative effect of the four reclamation projects,the salinity decreases by approximately 0.5in the upper reaches of the North Branch and increases by 0.5-1.0 in the middle and lower reaches of the North Branch.In the North Channel,the salinity decreases by approximately 0.5.In the North Passage,the salinity increases by 0.5-1.0.In the South Passage,the salinity increases by approximately 0.5 in the upper reaches and decreases by 0.2-0.5 on the north side of the middle and lower reaches.During neap tide,the cumulative effects of the four reclamation projects and the individual projects are similar to those during spring tide,but there are some differences.The effects of an individual reclamation project on WDR and saltwater intrusion during spring and neap tides are simulated and analyzed in detail.The cumulative effect of the four reclamation projects favors freshwater usage in the Changjiang River estuary.展开更多
China’s Bohai Bay has experienced large-scale land reclamation since 2000.These reclamation projects create a nearshore ecological imbalance and shift sediment transport by changing the tidal current.However,these ti...China’s Bohai Bay has experienced large-scale land reclamation since 2000.These reclamation projects create a nearshore ecological imbalance and shift sediment transport by changing the tidal current.However,these tidal current changes are not comprehensively understood.In this paper,the coastline changes in Bohai Bay due to reclamation are investigated and the responses of the tidal current are calculated through numerical methods.The results show that the coastline length of the bay increases by more than 500 km from 2000 to 2015 with the largest reclamation rate of 150.9 km^(2)/a.Consequently,the current velocity changes with an uneven distribution near the reclamation due to construction masking and dike protrusion.The tidal symmetry also changes in most nearshore areas,with opposite variations in the current velocity at peak flood and ebb tide.In addition,the tide direction deflects to bypass the reclamation and is usually consistent with the coastline.Harmonic analysis of the dominant M2 tidal constituent shows that the range of the reciprocating current is widely extended.The total influence of the reclamation can reach the-8-m isobaths in Bohai Bay.Changes in the tidal current are the main causes of water environment deterioration.Therefore,the arrangement and structural optimization of reclamation projects should be considered in the future.展开更多
The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was develope...The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.展开更多
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the...The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.展开更多
Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclam...Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclamation has become highlights in the past 10 years,and China is boosting land reclamation in mining areas.Disturbance characteristics vary from region to region,according to natural and geological conditions,coal mining area land reclamation was divided into 3 zones,which are eastern,western and southern.Reclamation strategies are focused on prime farmland protection in eastern and ecological restoration in western and southern zones,respectively.Several innovative reclamation technologies and theories for the past 10 years were introduced in this paper,including concurrent mining and reclamation,Yellow river sediments backfilling,self-reclamation,and topsoil alternatives in opencast mines.Besides,in the government regulation and legal system building respect,several important laws and regulations were issued and implemented in the past 5 years,promoting land reclamation management and supervision greatly.Land reclamation is and will still be one of the most important parts of coal industry in the future,and more efforts and funds are expected to get involved.展开更多
The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thic...Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.展开更多
Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tida...Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.展开更多
The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual s...The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual situation which included the topography,the soil in the mine area and so on,the reclamation land in the mine area was divided into the living area,the production area,the coal yard,the temporary coal gangue yard and other subsidiary facilities district.It determined that the main destruction type in every unit was the occupation,and the destruction degree was severe.Meanwhile referring the suitability evaluation standards of cultivated field and woodland,it finally determined that the reclamation direction of evaluation land which was damaged seriously by the occupation in the mine area was all suitable to the cultivated field and woodland.展开更多
The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land recla...The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land reclamation program targeted poorly, which is bad for the control of overall carbon resource and emission. According to the requirements in regional division of encouraged, restricted and prohibited development, in various regions, multiple objectives were set as to maximize economic benefits and not to reduce the carbon sinks level of mine area, using Markov process optimization land-use structure, and based on the land type and characteristics, by floating changing, increasing or decreasing, land exploitation structure was adjusted to meet the need of low-carbon mine land exploitation.展开更多
Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for ...Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for example,concluded the method of controlling S.alterniflora by integrating mechanical mowing and hydraulic reclamation in view of the threatening expansion of this species and serious land shortage in the local area.Moreover,it explored the ecological planning method of reclamation area based on this method.In view of the ecological sensitivity of the reclamation area,urban ecological planning concept was introduced into both processes of the development:penetrative reclamation and urban planning.The reclamation project has to meet such requirements as site selection,scope,water surface ratio etc.,the planning ensures the ecological sustainability in functional orientation,spatial structure,green space system and development intensity.展开更多
A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of ...A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of the United States, this paper deeply studies the reclamation technique of surface mining by a CPS and comprehensively evaluates its reclamation effect. Problerns and improvements of the reclamation technique are also discussed in this paper.展开更多
Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether la...At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether laboratory hyperspectral data might be used to estimate the physicochemical characteristics of these reclaimed saline soils. A coastal region of Shangyu City (Zhejiang Province), which was grouped into four subzones according to reclamation history, was used as the study area, and soil samples were collected in each subzone. Physicochemical analyses showed that the soils were characterized by high electrical conductivity and sand content with low organic matter; the longer the saline lands had been reclaimed, the lower were the electrical conductivity and sand content and the higher the organic matter content. These changing trends of soil chemical and physical properties were found in laboratory reflectance spectra of soil samples and their first-order derivative curves. Stepwise discriminant analysis (SDA) identified six salient spectral bands at 488, 530, 670, 880, 1400, and 1900 nm. Using derived discriminant functions for saline lands with different historical years of reclamation, classification revealed an overall accuracy from a self-test of 86.6% and from cross-validation of 89.3%. Therefore, as opposed to time-consuming field investigations, this study suggested that remotely sensed hyperspectral data could serve as a promising measure to assess the reclamation levels of coastal saline lands.展开更多
The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil samplin...The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).展开更多
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimenta...A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.展开更多
Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the de...Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the decision-making related to land reclamation. An improved method, which is called limit comprehensive conditions method, was developed after different suitability evaluation methods were studied. Based on this method, the reclaimed land of the Gaoqiao bauxite mining area was evaluated. The Gaoqiao mining area was divided into seven evaluation units that were evaluated respectively by selecting evaluation factors and establishing grade standards. The results show that the proposed method is more applicable and easier to handle. Moreover, its evaluation results are more scientific compared with the traditional evaluation methods. The improved method can be beneficial to the rapid monitoring and the effective management of reclaimed land in the opencast mine area.展开更多
Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method...Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method to reclaim salt-affected land. In order to improve the effect of reclamation and sustainability of salt-affected land production, a field experiment (with reclaimed 1-3 yr fields) was carried out to investigate changes in soil physical, chemical, and biological properties during the process of reclamation with cropping maize and drip irrigation. Results showed that soil bulk density in 0-20 cm soil layer decreased from 1.71 g·cm-3 in unreclaimed land to 1.44 g ·cm^-3 in reclaimed 3 yr fields, and saturated soil water content of 0-10 cm layer increased correspondingly from 20.3 to 30.2%. Both soil salinity and pH value in 0-40 cm soil layer dropped markedly after reclaiming 3 yr. Soil organic matter content reduced, while total nitrogen, total phosphorus, and total potassium all tended to increase after cropping and drip irrigation. The quantities of bacteria, actinomycete, and fungi in 0-40 cm soil layer all greatly increased with increase of reclaimed years, and they tended to distribute homogeneously in 0-40 cm soil profile. The urease activity and alkaline phosphatase activity in 0-40 cm soil layers were also enhanced, but the sucrase activity was not greatly changed. These results indicated that after crop cultivation and drip irrigation, soil physical environment and nutrients status were both improved. This was benefit for microorganism's activity and plant's growth.展开更多
Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests o...Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52078034).
文摘During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.
基金Supported by the Science and Technology Commission of Shanghai Municipality(No.21JC1402500)。
文摘Estuarine projects can change local topography and influence water transport and saltwater intrusion.The Changjiang(Yangtze)River estuary is a multichannel estuary,and four major reclamation projects have been implemented in the Changjiang River estuary in recent years:the Xincun Shoal reclamation project(RP-XCS),the Qingcao Shoal reclamation project(RP-QCS),the Eastern Hengsha Shoal reclamation project(RP-EHS),and the Nanhui Shoal reclamation project(RP-NHS).The effects of the four reclamation projects and each project on the saltwater intrusion and water resources in the Changjiang River estuary were simulated in a 3D numerical model.Results show that for a multichannel estuary,local reclamation projects change the local topography and water diversion ratio(WDR)between channels and influence water and salt transport and freshwater utilization in the estuary.During spring tide,under the cumulative effect of the four reclamation projects,the salinity decreases by approximately 0.5in the upper reaches of the North Branch and increases by 0.5-1.0 in the middle and lower reaches of the North Branch.In the North Channel,the salinity decreases by approximately 0.5.In the North Passage,the salinity increases by 0.5-1.0.In the South Passage,the salinity increases by approximately 0.5 in the upper reaches and decreases by 0.2-0.5 on the north side of the middle and lower reaches.During neap tide,the cumulative effects of the four reclamation projects and the individual projects are similar to those during spring tide,but there are some differences.The effects of an individual reclamation project on WDR and saltwater intrusion during spring and neap tides are simulated and analyzed in detail.The cumulative effect of the four reclamation projects favors freshwater usage in the Changjiang River estuary.
基金Supported by the National Natural Science Foundation of China(Nos.52109097,51979185)。
文摘China’s Bohai Bay has experienced large-scale land reclamation since 2000.These reclamation projects create a nearshore ecological imbalance and shift sediment transport by changing the tidal current.However,these tidal current changes are not comprehensively understood.In this paper,the coastline changes in Bohai Bay due to reclamation are investigated and the responses of the tidal current are calculated through numerical methods.The results show that the coastline length of the bay increases by more than 500 km from 2000 to 2015 with the largest reclamation rate of 150.9 km^(2)/a.Consequently,the current velocity changes with an uneven distribution near the reclamation due to construction masking and dike protrusion.The tidal symmetry also changes in most nearshore areas,with opposite variations in the current velocity at peak flood and ebb tide.In addition,the tide direction deflects to bypass the reclamation and is usually consistent with the coastline.Harmonic analysis of the dominant M2 tidal constituent shows that the range of the reciprocating current is widely extended.The total influence of the reclamation can reach the-8-m isobaths in Bohai Bay.Changes in the tidal current are the main causes of water environment deterioration.Therefore,the arrangement and structural optimization of reclamation projects should be considered in the future.
基金This work was financially supported by the State Key Laboratory of New Textile Materials and Advanced Processing Technologies(No.FZ2021014)the Wuhan Science and Technology Bureau Application Foundation Frontier Project(2022023988065216)+2 种基金the National Natural Science Foundation of China(J2124010,51405348,51575405)the Educational Commission of Hubei Province of China(D20171604)the Hubei Provincial Natural Science Foundation of China(2018CFB673).
文摘The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.
文摘The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.
文摘Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclamation has become highlights in the past 10 years,and China is boosting land reclamation in mining areas.Disturbance characteristics vary from region to region,according to natural and geological conditions,coal mining area land reclamation was divided into 3 zones,which are eastern,western and southern.Reclamation strategies are focused on prime farmland protection in eastern and ecological restoration in western and southern zones,respectively.Several innovative reclamation technologies and theories for the past 10 years were introduced in this paper,including concurrent mining and reclamation,Yellow river sediments backfilling,self-reclamation,and topsoil alternatives in opencast mines.Besides,in the government regulation and legal system building respect,several important laws and regulations were issued and implemented in the past 5 years,promoting land reclamation management and supervision greatly.Land reclamation is and will still be one of the most important parts of coal industry in the future,and more efforts and funds are expected to get involved.
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
文摘Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.
文摘Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.
基金Supported by Guizhou Science and Technology Fund(Guizhou Science and Technology Fund J Word LKS[2009]Number20)
文摘The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual situation which included the topography,the soil in the mine area and so on,the reclamation land in the mine area was divided into the living area,the production area,the coal yard,the temporary coal gangue yard and other subsidiary facilities district.It determined that the main destruction type in every unit was the occupation,and the destruction degree was severe.Meanwhile referring the suitability evaluation standards of cultivated field and woodland,it finally determined that the reclamation direction of evaluation land which was damaged seriously by the occupation in the mine area was all suitable to the cultivated field and woodland.
基金Supported by Business Public Welfare Fund Project of Ministry of Land and Resources,China(201011003)Soft Science Project of Science and Technology Department of Hebei Province,China(13456107D)
文摘The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land reclamation program targeted poorly, which is bad for the control of overall carbon resource and emission. According to the requirements in regional division of encouraged, restricted and prohibited development, in various regions, multiple objectives were set as to maximize economic benefits and not to reduce the carbon sinks level of mine area, using Markov process optimization land-use structure, and based on the land type and characteristics, by floating changing, increasing or decreasing, land exploitation structure was adjusted to meet the need of low-carbon mine land exploitation.
基金Sponsored by Science and Technology Program of Ministry of Housing and Urban-Rural Construction(2015R2-061)Youth Science Foundation of Nature Science Foundation of China(41201165)+1 种基金National Science and Technology Support Plan(2015BAL02B00)Doctoral Scientific Fund Project of the Ministry of Education of China(20130101110029)
文摘Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for example,concluded the method of controlling S.alterniflora by integrating mechanical mowing and hydraulic reclamation in view of the threatening expansion of this species and serious land shortage in the local area.Moreover,it explored the ecological planning method of reclamation area based on this method.In view of the ecological sensitivity of the reclamation area,urban ecological planning concept was introduced into both processes of the development:penetrative reclamation and urban planning.The reclamation project has to meet such requirements as site selection,scope,water surface ratio etc.,the planning ensures the ecological sustainability in functional orientation,spatial structure,green space system and development intensity.
文摘A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of the United States, this paper deeply studies the reclamation technique of surface mining by a CPS and comprehensively evaluates its reclamation effect. Problerns and improvements of the reclamation technique are also discussed in this paper.
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
基金Project supported by the German Federal Ministry for Research and Education, Germany (No. AZ39742)the National Natural Science Foundation of China (No. 40571066).
文摘At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether laboratory hyperspectral data might be used to estimate the physicochemical characteristics of these reclaimed saline soils. A coastal region of Shangyu City (Zhejiang Province), which was grouped into four subzones according to reclamation history, was used as the study area, and soil samples were collected in each subzone. Physicochemical analyses showed that the soils were characterized by high electrical conductivity and sand content with low organic matter; the longer the saline lands had been reclaimed, the lower were the electrical conductivity and sand content and the higher the organic matter content. These changing trends of soil chemical and physical properties were found in laboratory reflectance spectra of soil samples and their first-order derivative curves. Stepwise discriminant analysis (SDA) identified six salient spectral bands at 488, 530, 670, 880, 1400, and 1900 nm. Using derived discriminant functions for saline lands with different historical years of reclamation, classification revealed an overall accuracy from a self-test of 86.6% and from cross-validation of 89.3%. Therefore, as opposed to time-consuming field investigations, this study suggested that remotely sensed hyperspectral data could serve as a promising measure to assess the reclamation levels of coastal saline lands.
基金Under the auspices of Ministry of Education,China (No.108148)State Key Laboratory of Urban and Regional Ecology (No.SKLURE2010-2-2)+2 种基金National Basic Research Program of China (No.2010CB951203)Key Research Program of Shanghai Science & Technology (No.08231200700,08231200702)111 Project,Ministry of Education,China (No.B08022)
文摘The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of Chinathe United States-Israel Binational Agricultural Research and Development Fund (No.452420)the Program for Changjiang Scholars and Innovative Research Team in University, China (No.IRT0657)
文摘A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.
基金Project(40901217)supported by the National Natural Science Foundation of China
文摘Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the decision-making related to land reclamation. An improved method, which is called limit comprehensive conditions method, was developed after different suitability evaluation methods were studied. Based on this method, the reclaimed land of the Gaoqiao bauxite mining area was evaluated. The Gaoqiao mining area was divided into seven evaluation units that were evaluated respectively by selecting evaluation factors and establishing grade standards. The results show that the proposed method is more applicable and easier to handle. Moreover, its evaluation results are more scientific compared with the traditional evaluation methods. The improved method can be beneficial to the rapid monitoring and the effective management of reclaimed land in the opencast mine area.
基金supported by the Chinese Academy of Sciences Action Plan for the Development of Western China (KZCX2-XB2-13)the Chinese Academy of Sciences Knowledge Innovation Project(KSCX2-YW-N-080)the Project for 100 Outstanding Young Scientists supported by Chinese Academy of Sciences
文摘Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method to reclaim salt-affected land. In order to improve the effect of reclamation and sustainability of salt-affected land production, a field experiment (with reclaimed 1-3 yr fields) was carried out to investigate changes in soil physical, chemical, and biological properties during the process of reclamation with cropping maize and drip irrigation. Results showed that soil bulk density in 0-20 cm soil layer decreased from 1.71 g·cm-3 in unreclaimed land to 1.44 g ·cm^-3 in reclaimed 3 yr fields, and saturated soil water content of 0-10 cm layer increased correspondingly from 20.3 to 30.2%. Both soil salinity and pH value in 0-40 cm soil layer dropped markedly after reclaiming 3 yr. Soil organic matter content reduced, while total nitrogen, total phosphorus, and total potassium all tended to increase after cropping and drip irrigation. The quantities of bacteria, actinomycete, and fungi in 0-40 cm soil layer all greatly increased with increase of reclaimed years, and they tended to distribute homogeneously in 0-40 cm soil profile. The urease activity and alkaline phosphatase activity in 0-40 cm soil layers were also enhanced, but the sucrase activity was not greatly changed. These results indicated that after crop cultivation and drip irrigation, soil physical environment and nutrients status were both improved. This was benefit for microorganism's activity and plant's growth.
文摘Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.