AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related ge...AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGE- BSA) and N'-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro. RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α.RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1( I ) mRNA by AGE-BSA. CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.展开更多
AIM: To identify the effect and regulatory mechanism of amyloid β (Aβ) protein on retinal pigment epithelial (RPE) cells in cell proliferation and apoptosis, and clarify Aβ role in the pathogenesis of age-rela...AIM: To identify the effect and regulatory mechanism of amyloid β (Aβ) protein on retinal pigment epithelial (RPE) cells in cell proliferation and apoptosis, and clarify Aβ role in the pathogenesis of age-related macular degeneration (AMD). METHODS: The model of Aβ25-35 protein cytotoxicity in RPE cell was successfully established to investigate the effect of Aβ protein on RPE cells in vitro. Based on Aβ protein, the specific inhibitors (HY-50682 or BAY11-7082) or activating agent (lipopolysaccharide) was used to analyze the regulatory mechanism of Aβ protein to RPE cells on cell proliferation and apoptosis by flow cytometry, real-time polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay and dual-luciferase reporter gene assay. RESULTS: The number of RPE cells, treated with Aβ25-35 from 0.3 to 60 μmol/L, significantly reduce (P〈0.01), and had the dose-dependent effect. Aβ protein 60 μmol/L inhibits the G1/S phase transition (P〈0.01) and down-regulated cyclin E mRNA level (P〈0.01). Similarly, Aβ25-35 induced a significant increase of cell apoptosis, accompanied by the significantly higher level of activated caspase 3 protein. Furthermore, nuclear factor-kappaB (NF-κB) activity and hosphorylated Iκ-Ba level would significantly lower in treated RPE cells. Using specific inhibitors or activating agent based on the Aβ, the cell numbers, NF-κB activity, phosphorylated Iκ-Ba level, receptor for advanced glycation endproducts (RAGE) gene expression levels, cyclin E mRNA level and activated caspase 3 level had accordingly changed by different methods, confirming that RAGE/NF-κB signaling pathway involved in the regulation of Aβ protein on RPE cell apoptosis and proliferation. CONCLUSION: Aβ protein inhibits cell proliferation and activates apoptosis via inactivation of the RAGE/NF-κB signaling pathway in RPE cell.展开更多
基金Supported by Grants from the Interdisciplinary Center for Clinical Research(IZKF,Project B39)the Johannes and Frieda Marohn Foundation of the University of Erlangen-Nuremberg,Germany
文摘AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGE- BSA) and N'-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro. RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α.RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1( I ) mRNA by AGE-BSA. CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.
文摘AIM: To identify the effect and regulatory mechanism of amyloid β (Aβ) protein on retinal pigment epithelial (RPE) cells in cell proliferation and apoptosis, and clarify Aβ role in the pathogenesis of age-related macular degeneration (AMD). METHODS: The model of Aβ25-35 protein cytotoxicity in RPE cell was successfully established to investigate the effect of Aβ protein on RPE cells in vitro. Based on Aβ protein, the specific inhibitors (HY-50682 or BAY11-7082) or activating agent (lipopolysaccharide) was used to analyze the regulatory mechanism of Aβ protein to RPE cells on cell proliferation and apoptosis by flow cytometry, real-time polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay and dual-luciferase reporter gene assay. RESULTS: The number of RPE cells, treated with Aβ25-35 from 0.3 to 60 μmol/L, significantly reduce (P〈0.01), and had the dose-dependent effect. Aβ protein 60 μmol/L inhibits the G1/S phase transition (P〈0.01) and down-regulated cyclin E mRNA level (P〈0.01). Similarly, Aβ25-35 induced a significant increase of cell apoptosis, accompanied by the significantly higher level of activated caspase 3 protein. Furthermore, nuclear factor-kappaB (NF-κB) activity and hosphorylated Iκ-Ba level would significantly lower in treated RPE cells. Using specific inhibitors or activating agent based on the Aβ, the cell numbers, NF-κB activity, phosphorylated Iκ-Ba level, receptor for advanced glycation endproducts (RAGE) gene expression levels, cyclin E mRNA level and activated caspase 3 level had accordingly changed by different methods, confirming that RAGE/NF-κB signaling pathway involved in the regulation of Aβ protein on RPE cell apoptosis and proliferation. CONCLUSION: Aβ protein inhibits cell proliferation and activates apoptosis via inactivation of the RAGE/NF-κB signaling pathway in RPE cell.