After the rats were inflicted with 30% TBSA full thickness scalding on their back, the changes of insulin receptor tyrosine protein kinase (IRTPK) were studied on the 4th day postscalding with the phosphorylation of ...After the rats were inflicted with 30% TBSA full thickness scalding on their back, the changes of insulin receptor tyrosine protein kinase (IRTPK) were studied on the 4th day postscalding with the phosphorylation of exogenous substrates stimulated with hepatic and muscular plasma membrane in order to explore the possible molecular mechanism of insulin resistance after thermal injury. It was found that insulin resistance appeared in the early stage postscalding while the basic value of phosphorylation of exogenous substrates stimulated with hepatic and muscular plasma membrane was increased and the activity of IPTPK to insulin stimulation was greatly suppressed as compared with the control. These facts suggest that the impaired responses of IRTPK to insulin stimulation may affect the down-stream signal transmission of the insulin receptors and then the signal coupling pathwayfor glucose transmembranous transportation and glycogen synthesis mediated by IRTPK is obstructed and insulinresistance develops.展开更多
The effect of Rg1,a saponin extracted froin Panax ginseng, on the phenotype,receptor and the activity of protein tyrosine kinase (PTK) of lymphocytes isolated from 7 healthy oldpersons were studied. The CD25, CD45RA a...The effect of Rg1,a saponin extracted froin Panax ginseng, on the phenotype,receptor and the activity of protein tyrosine kinase (PTK) of lymphocytes isolated from 7 healthy oldpersons were studied. The CD25, CD45RA and CD45RO phenotypes of lymphocytes were 4eter-mined by indirect immunofluorescence technique. The percentage of CD25, CD45RA and CD45ROpositive lymphocytes was 38.3%±17.3%, 46.0% 15.1%, and 52.6%±14.1% respectively after incu-bation with PHA (5 μ±/ml) for 72 hours. However, there were 58.0%±12.5%, CD25, 64.1% ± 12.4%,CD45RA, and 74.0%±8.0%, CD45RO positive cells in the presence of Rg, ( 1μg/ml) along with PHA(5 μg/ml) over the sanie period of incubation. A significant increase was induced by Rgi (P<0.05).The activities of PTK in the cytoplasm and membrane of lymphocytes were measured by ELISAmcthod after incubation with PHA or PHA+Rg1. The absorbance value of PTK activity in cytoplasmafter 72 hr incubation was 0. 120±0.020 in PHA group, but 0. 1 38±0.015 in PHA+Rg1 group. In thelymphocyte membrane, it was 0.374± 0.060 in PHA group and 0.403 ± 0.008 in PHA+Rg1 group(P<0.001). These results showed that Rgi significantly arid simultaneously increased both the PT Kactivity and the expression of phenotype of lymphocytes.展开更多
AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARP...AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for α-smooth muscle actin (α-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay.RESULTSThe mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. α-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, α-SMA expression and cell migration.CONCLUSIONPTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process.展开更多
·AIM: To determine the effects of laser photocoagulation on serum levels of angiopoietin-1(Ang-1),angiopoietin-2(Ang-2), soluble angiopoietin receptor Tie-2(Tie-2), Ang-1/Ang-2 ratio and vascular endothelial grow...·AIM: To determine the effects of laser photocoagulation on serum levels of angiopoietin-1(Ang-1),angiopoietin-2(Ang-2), soluble angiopoietin receptor Tie-2(Tie-2), Ang-1/Ang-2 ratio and vascular endothelial growth factor(VEGF) in patients with type 2diabetes mellitus(T2DM) and proliferative diabetic retinopathy(PDR). We also explored the role of the Ang/Tie system in PDR.·METHODS:Totally 160patientswithT2 DM, including50 patients with non-diabetic retinopathy(NDR), 58 patients with non-proliferative diabetic retinopathy(NPDR), and52 patients with PDR were enrolled in this study. Serum Ang-1, Ang-2, Tie-2 receptor and VEGF levels were measured using enzyme-linked immunosorbent assays for all patients and were repeated in 26 patients who underwent laser photocoagulation two months after the procedure.·RESULTS:ThemedianlevelsofAng-2andVEGFinserum were significantly higher in the NPDR group(4.23 ng/mL and 303.2 pg/mL, respectively) compared to the NDR group(2.67 ng/mL and 159.8 pg/mL, respectively, P 【0.01), with the highest level in the PDR group(6.26 ng/mL and531.2 pg/mL, respectively, P 【0.01). The median level of Ang-1 was significantly higher in the NPDR group(10.77ng/mL) compared to the NDR group(9.31 ng/mL) and the PDR groups(9.54 ng/mL)(P 【0.05), while no difference was observed between the PDR and NDR groups. Ang-1/Ang-2 ratio of PDR group was lowest in three groups(1.49 vs 2.69 and 2.90, both P 【0.01). The median level of Tie-2was not significantly different among three groups(P 】0.05).Ang-2 was positively correlated with VEGF and Tie-2 in the PDR and NPDR groups(both P 【0.05). Among the 26 patients who underwent laser photocoagulation, serum Ang-2 and VEGF levels significantly decreased(both P 【0.05), whereas serum Ang-1 level and Ang-1/Ang-2ratio were weakly increased(P 】0.05). The median levels of Ang-2 and VEGF in serum were highest in PDR group,however, Ang-1/Ang-2 ratio of PDR group was lowest in three groups.·CONCLUSION: Laser photocoagulation can reduce serum Ang-2 and VEGF levels. The Ang/Tie system and VEGF play an important role in the development and progression of T2 DM patients with PDR.展开更多
Aberrant forms of the anaplastic lymphoma kinase(ALK) are involved in the pathogenesis of several types of cancer, including anaplastic large cell lymphoma, non-small-cell lung cancer(NSCLC), inflammatory myofibroblas...Aberrant forms of the anaplastic lymphoma kinase(ALK) are involved in the pathogenesis of several types of cancer, including anaplastic large cell lymphoma, non-small-cell lung cancer(NSCLC), inflammatory myofibroblastic tumors, colorectal cancer, neuroblastoma and others. In general, the ALK catalytic domain is rearranged and fused to a dimerization domain encoded by an unrelated gene. Less frequently, full-length ALK is activated by point mutations. The common theme is unregulated firing of ALK downstream signalling, leading to uncontrolled cell division and increased cell survival. ALK-driven tumors can be treated with Crizotinib, an orally available dual ALK/MET inhibitor, currently approved for advanced ALK-positive NSCLCs. Crizotinibtreated patients achieve high response rates, with an excellent toxicity profile. However, drug-resistant disease often develops, particularly in NSCLC patients. The processes leading to drug resistance include both ALKdependent(point mutations or gene amplification), as well as ALK-independent mechanisms, which are here briefly discussed. Recently, Ceritinib has been approved for Crizotinib-refractory NSCLC, further extending patients' survival, but resistance again emerged. Novel ALK kinase inhibitors are currently under clinical development, showing great promise for improved efficacy in drugresistance disease. It is opinion of the author that drugresistance is likely to arise under any treatment, due to intrinsic heterogeneity and adaptability of cancer. To prevent or delay this phenomenon, we need to treat less advanced disease, with drugs that are rapidly effective in order not to allow enough time for tumor evolution, and we want to have more and more drugs with nonoverlapping resistance profiles, for subsequent lines of targeted therapy. Finally, the use of drug combinations may exponentially decrease the chances of resistance.展开更多
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi...Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.展开更多
文摘After the rats were inflicted with 30% TBSA full thickness scalding on their back, the changes of insulin receptor tyrosine protein kinase (IRTPK) were studied on the 4th day postscalding with the phosphorylation of exogenous substrates stimulated with hepatic and muscular plasma membrane in order to explore the possible molecular mechanism of insulin resistance after thermal injury. It was found that insulin resistance appeared in the early stage postscalding while the basic value of phosphorylation of exogenous substrates stimulated with hepatic and muscular plasma membrane was increased and the activity of IPTPK to insulin stimulation was greatly suppressed as compared with the control. These facts suggest that the impaired responses of IRTPK to insulin stimulation may affect the down-stream signal transmission of the insulin receptors and then the signal coupling pathwayfor glucose transmembranous transportation and glycogen synthesis mediated by IRTPK is obstructed and insulinresistance develops.
文摘The effect of Rg1,a saponin extracted froin Panax ginseng, on the phenotype,receptor and the activity of protein tyrosine kinase (PTK) of lymphocytes isolated from 7 healthy oldpersons were studied. The CD25, CD45RA and CD45RO phenotypes of lymphocytes were 4eter-mined by indirect immunofluorescence technique. The percentage of CD25, CD45RA and CD45ROpositive lymphocytes was 38.3%±17.3%, 46.0% 15.1%, and 52.6%±14.1% respectively after incu-bation with PHA (5 μ±/ml) for 72 hours. However, there were 58.0%±12.5%, CD25, 64.1% ± 12.4%,CD45RA, and 74.0%±8.0%, CD45RO positive cells in the presence of Rg, ( 1μg/ml) along with PHA(5 μg/ml) over the sanie period of incubation. A significant increase was induced by Rgi (P<0.05).The activities of PTK in the cytoplasm and membrane of lymphocytes were measured by ELISAmcthod after incubation with PHA or PHA+Rg1. The absorbance value of PTK activity in cytoplasmafter 72 hr incubation was 0. 120±0.020 in PHA group, but 0. 1 38±0.015 in PHA+Rg1 group. In thelymphocyte membrane, it was 0.374± 0.060 in PHA group and 0.403 ± 0.008 in PHA+Rg1 group(P<0.001). These results showed that Rgi significantly arid simultaneously increased both the PT Kactivity and the expression of phenotype of lymphocytes.
基金Supported by Shandong Provincial Natural Science Foundation,China(No.ZR2012HQ004)the Research Fund for Fundamental Research Project of Qingdao(No.13-1-4-180-jch)+1 种基金the Scientific Research Fund of Huangdao District of Qingdao City(No.2014-1-74)the Young People Scientific Research Fund of Affiliated Hospital,Qingdao University(No.QDFY134)
文摘AIMTo evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process.METHODSARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for α-smooth muscle actin (α-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay.RESULTSThe mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. α-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, α-SMA expression and cell migration.CONCLUSIONPTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process.
文摘·AIM: To determine the effects of laser photocoagulation on serum levels of angiopoietin-1(Ang-1),angiopoietin-2(Ang-2), soluble angiopoietin receptor Tie-2(Tie-2), Ang-1/Ang-2 ratio and vascular endothelial growth factor(VEGF) in patients with type 2diabetes mellitus(T2DM) and proliferative diabetic retinopathy(PDR). We also explored the role of the Ang/Tie system in PDR.·METHODS:Totally 160patientswithT2 DM, including50 patients with non-diabetic retinopathy(NDR), 58 patients with non-proliferative diabetic retinopathy(NPDR), and52 patients with PDR were enrolled in this study. Serum Ang-1, Ang-2, Tie-2 receptor and VEGF levels were measured using enzyme-linked immunosorbent assays for all patients and were repeated in 26 patients who underwent laser photocoagulation two months after the procedure.·RESULTS:ThemedianlevelsofAng-2andVEGFinserum were significantly higher in the NPDR group(4.23 ng/mL and 303.2 pg/mL, respectively) compared to the NDR group(2.67 ng/mL and 159.8 pg/mL, respectively, P 【0.01), with the highest level in the PDR group(6.26 ng/mL and531.2 pg/mL, respectively, P 【0.01). The median level of Ang-1 was significantly higher in the NPDR group(10.77ng/mL) compared to the NDR group(9.31 ng/mL) and the PDR groups(9.54 ng/mL)(P 【0.05), while no difference was observed between the PDR and NDR groups. Ang-1/Ang-2 ratio of PDR group was lowest in three groups(1.49 vs 2.69 and 2.90, both P 【0.01). The median level of Tie-2was not significantly different among three groups(P 】0.05).Ang-2 was positively correlated with VEGF and Tie-2 in the PDR and NPDR groups(both P 【0.05). Among the 26 patients who underwent laser photocoagulation, serum Ang-2 and VEGF levels significantly decreased(both P 【0.05), whereas serum Ang-1 level and Ang-1/Ang-2ratio were weakly increased(P 】0.05). The median levels of Ang-2 and VEGF in serum were highest in PDR group,however, Ang-1/Ang-2 ratio of PDR group was lowest in three groups.·CONCLUSION: Laser photocoagulation can reduce serum Ang-2 and VEGF levels. The Ang/Tie system and VEGF play an important role in the development and progression of T2 DM patients with PDR.
基金Supported by The Italian Association for Cancer Research,AIRC 2013 IG-14249
文摘Aberrant forms of the anaplastic lymphoma kinase(ALK) are involved in the pathogenesis of several types of cancer, including anaplastic large cell lymphoma, non-small-cell lung cancer(NSCLC), inflammatory myofibroblastic tumors, colorectal cancer, neuroblastoma and others. In general, the ALK catalytic domain is rearranged and fused to a dimerization domain encoded by an unrelated gene. Less frequently, full-length ALK is activated by point mutations. The common theme is unregulated firing of ALK downstream signalling, leading to uncontrolled cell division and increased cell survival. ALK-driven tumors can be treated with Crizotinib, an orally available dual ALK/MET inhibitor, currently approved for advanced ALK-positive NSCLCs. Crizotinibtreated patients achieve high response rates, with an excellent toxicity profile. However, drug-resistant disease often develops, particularly in NSCLC patients. The processes leading to drug resistance include both ALKdependent(point mutations or gene amplification), as well as ALK-independent mechanisms, which are here briefly discussed. Recently, Ceritinib has been approved for Crizotinib-refractory NSCLC, further extending patients' survival, but resistance again emerged. Novel ALK kinase inhibitors are currently under clinical development, showing great promise for improved efficacy in drugresistance disease. It is opinion of the author that drugresistance is likely to arise under any treatment, due to intrinsic heterogeneity and adaptability of cancer. To prevent or delay this phenomenon, we need to treat less advanced disease, with drugs that are rapidly effective in order not to allow enough time for tumor evolution, and we want to have more and more drugs with nonoverlapping resistance profiles, for subsequent lines of targeted therapy. Finally, the use of drug combinations may exponentially decrease the chances of resistance.
基金a Ph D fellowship by FCT-Fundacao para a Ciência Tecnologia (SFRH/BD/135868/2018)(to SSC)。
文摘Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.