期刊文献+
共找到83,208篇文章
< 1 2 250 >
每页显示 20 50 100
Olfactory receptors in neural regeneration in the central nervous system
1
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA NEURONS
下载PDF
CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer 被引量:1
2
作者 Samia M. O’Bryan J. Michael Mathis 《Journal of Cancer Therapy》 2021年第6期311-336,共26页
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant </span><span style="font-family:Verdana;">progres... Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant </span><span style="font-family:Verdana;">progress has been made in developing targeted therapies for breast cancer,</span> <span style="font-family:Verdana;">advanced breast cancer continues to have high mortality, with poor 5-year</span> <span style="font-family:Verdana;">survival rates. Thus, current therapies are insufficient in treating advanced</span><span style="font-family:Verdana;"> stages of breast cancer;new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber </span><span style="font-family:Verdana;">to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We</span> <span style="font-family:Verdana;">showed that the modified virus targets and infects CXCR4- and CXCR7-</span><span style="font-family:Verdana;">overexpressing breast cancer cells more efficiently than a wild-type control</span><span style="font-family:Verdana;"> vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors. 展开更多
关键词 Adenovirus Breast Cancer Cancer CHEMOKINE CXCL12 cxcr4 cxcr7 ONCOLYTIC Preclinical Receptor Virotherapy Virus
下载PDF
Cloning of Encoding Sequences for Chemokine Receptors CXCR4 and CCR5 from a Chinese Lymphocyte cDNAs
3
作者 洪梅 卢圣栋 《Chinese Medical Sciences Journal》 CAS CSCD 1999年第3期193-194,共2页
Ithasbenknownrecentlythatcofactors,whichbelongtothefamilyofseventransmembraneGTPbindingproteincoupledrece... Ithasbenknownrecentlythatcofactors,whichbelongtothefamilyofseventransmembraneGTPbindingproteincoupledreceptors,arenecesary... 展开更多
关键词 cxcr4 CCR5 淋巴细胞 基因克隆 基因编码 序列分析
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
4
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
5
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
6
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
The Role of Toll-Like Receptors and Nuclear Factor κB p65 Protein in the Pathogenesis of Otitis Media
7
作者 Qingchen He Yongbo Zhu Bi Qiang 《Journal of Biosciences and Medicines》 2024年第10期246-257,共12页
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi... The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease. 展开更多
关键词 Otitis Media Toll-Like receptors Nuclear Factor κB p65 Signaling Pathway
下载PDF
Toll-like receptors 2 polymorphism is associated with psoriasis: A case-control study in the northern Chinese population
8
作者 Siyu Hao Yu Zhang +4 位作者 Anqi Yin Ying Lyu Nannan Tong Jiangtian Tian Yuzhen Li 《Frigid Zone Medicine》 2024年第2期96-101,共6页
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling... Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China. 展开更多
关键词 Toll-like receptors 2 PSORIASIS POLYMORPHISM SUSCEPTIBILITY
下载PDF
Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients:A matter of disease activity? 被引量:1
9
作者 Antonietta Gerarda Gravina Iacopo Panarese +7 位作者 Maria Consiglia Trotta Michele D'Amico Raffaele Pellegrino Franca Ferraraccio Marilena Galdiero Roberto Alfano Paolo Grieco Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1132-1142,共11页
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce... BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology. 展开更多
关键词 Melanocortin 3 receptor Melanocortin 5 receptor Ulcerative colitis Crohn's disease Inflammatory bowel disease
下载PDF
Role of bitter contributors and bitter taste receptors:a comprehensive review of their sources,functions and future development 被引量:1
10
作者 Xinyue Zhou Han Wang +6 位作者 Ming Huang Jin Chen Jianle Chen Huan Cheng Xingqian Ye Wenjun Wang Donghong Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1806-1824,共19页
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review... Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors. 展开更多
关键词 Bitter contributors Bitter taste receptor Health benefits FRUITS VEGETABLES
下载PDF
Retraction: Knockdown of Urothelial Carcinoma-Associated 1 Suppressed Cell Growth and Migration Through Regulating miR-301a and CXCR4 in Osteosarcoma MHCC97 Cells
11
作者 Oncology Research Editorial Office 《Oncology Research》 SCIE 2024年第8期1381-1381,共1页
Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in man... Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.The Editors-in-Chief therefore no longer have confidence in the integrity of the data in this article and decided to retract this article. 展开更多
关键词 Carcinoma cxcr4 raised
下载PDF
Crosstalk between androgen signaling and the chemokine receptor CXCR4:a novel strategy to promote myelin regeneration
12
作者 Marianne Bardy-Lagarde Narimène Asbelaoui Abdel Mouman Ghoumari 《Neural Regeneration Research》 SCIE CAS 2025年第9期2581-2582,共2页
Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterize... Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men. 展开更多
关键词 MYELIN cxcr4
下载PDF
Intricate roles of estrogen and estrogen receptors in digestive system cancers:a systematic review
13
作者 Xiaoning Gan Guanqi Dai +2 位作者 Yonghao Li Lin Xu Guolong Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第10期898-915,共18页
Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potentia... Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies. 展开更多
关键词 ESTROGEN estrogen receptor CANCER digestive system cancers gender disparity
下载PDF
Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury
14
作者 Mou Gao Qin Dong +3 位作者 Dan Zou Zhijun Yang Lili Guo Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1416-1430,共15页
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ... Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury. 展开更多
关键词 Akt signaling cerebral edema closed head injury Crry cxcr4 induced neural stem cell MICROGLIA NEUROINFLAMMATION
下载PDF
Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: a comprehensive review
15
作者 JUN-FENG ZHAO YI-RAN JIANG +2 位作者 TIAN-LIN GUO YONG-QING JIAO XUN WANG 《BIOCELL》 SCIE 2024年第7期1011-1022,共12页
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea... Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future. 展开更多
关键词 NEURODEGENERATION Glial cell RECEPTOR Alzheimer’s disease
下载PDF
Targeting CXCR4 and EDN1 for the treatment of recurrent miscarriage using stearic acid from traditional Chinese medicine
16
作者 Fang Liu Dong-Mei Shi +3 位作者 Wen-Ye Ma Da-Wei Tang Gang Bai Xin-You Yu 《Traditional Medicine Research》 2024年第11期65-75,共11页
Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM ... Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM by examining gene expression patterns and biological pathways in both mouse and human RM models.Meanwhile,explore relevant traditional Chinese medicine(TCM)components targeting potential therapeutic targets.Methods:We utilized the GSE211251 mouse and the GSE26787 human datasets,employing gene set enrichment analysis and gene metaphysics analysis to examine differentially expressed genes and enriched pathways.Single-cell RNA analysis uncovered cellular heterogeneity and arranged pharmacology-mapped potential drug-target intelligence.We employed molecular docking strategies to assess the affinity of TCM components for key proteins.Results:In the mouse model,genes such as Ly6f1 and Gpr26 were upregulated,while Stc5a and Galca exhibited downregulation.Gene set enrichment analysis identified key pathways,including the tumor necrosis factor-mediated signaling pathway.In human samples,Gene Ontology analysis highlighted processes such as apoptosis and cell adhesion.Single-cell RNA analysis revealed distinct cellular populations between normal and RM samples.Systems pharmacology identified C-X-C motif chemokine receptor 4(CXCR4)and endothelin 1(EDN1)as potential key targets,and molecular docking confirmed that stearic acid from TCM appears to regulate these proteins.Conclusion:This study presents a comprehensive analysis of the genetic and cellular underpinnings of RM,identifying CXCR4 and EDN1 as promising therapeutic targets.Stearic acid from TCM could provide targeted treatment by modulating these key proteins,paving the way for new RM treatment strategies. 展开更多
关键词 RM gene expression single-cell RNA analysis cxcr4 EDN1 stearic acid
下载PDF
N-acetylcysteine and zinc sulphate abate di-2-ethylhexyl phthalate-mediated reproductive dysfunction in rats:Focus on oxidative and sex hormone receptors mechanisms
17
作者 Victor Oghenekparobo Emojevwe Mega Obukohwo Oyovwi +7 位作者 Kayode Ezekiel Adewole Peggy Ejiro Ohwin Adeniran Oluwadamilare Akinola Alexander Obidike Naiho Eze Kingsley Nwangwa Victor Omo-Idonije Motunrayo Lade-Ige Benneth Ben-Azu 《Asian pacific Journal of Reproduction》 CAS 2024年第5期228-240,共13页
Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechan... Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity. 展开更多
关键词 Di-2-ethylhexyl phthalate TESTOSTERONE Androgen receptor 5Α-REDUCTASE OESTROGEN Luteinizing hormone
下载PDF
Foodborne toxin Aflatoxin B_(1)induced glomerular podocyte inflammation through proteolysis of RelA,downregulation of miR-9 and CXCR4/TXNIP/NLRP3 pathway
18
作者 Jie Zhang Shuang Yang +7 位作者 Baocai Xu Zihui Qin Xinyi Guo Ben Wei Qinghua Wu Kamil Kuca Tushuai Li Wenda Wu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2289-2309,共21页
Aflatoxin B_(1)(AFB_(1))is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin,particularly causing damages to kidney.Glomerular podocytes are terminally differentiated epithelial cells.AF... Aflatoxin B_(1)(AFB_(1))is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin,particularly causing damages to kidney.Glomerular podocytes are terminally differentiated epithelial cells.AFB_(1)induces podocyte inflammation,proteinuria and renal dysfunction.Studying the mechanism of AFB_(1)-induced podocyte inflammation and murine kidney dysfunction,we detected that AFB_(1)increased ubiquitindependent degradation of the transcription factor RelA through enhanced interaction of RelA with E3 ubiquitin ligase tripartite motif containing 7(TRIM7)in mouse podocyte clone-5(MPC-5)and mouse glomeruli.Reduction of RelA resulted in decreasing microRNA-9(miR-9)and activating the chemokine receptor 4(CXCR4),thioredoxin interacting protein(TXNIP),and NOD-like receptor pyrin domain-containing 3(NLRP3)signaling axis(CXCR4/TXNIP/NLRP3 pathway),leading to podocyte inflammation.We also determined that downregulation of miR-9 led to CXCR4 expression and the downstream TXNIP/NLRP3 pathway activation.Overexpression of miR-9 or deletion of CXCR4 suppressed AFB_(1)-induced CXCR4/TXNIP/NLRP3 pathway,resulting in alleviating podocyte inflammation and kidney dysfunction.Our findings indicated that ubiquitin-dependent proteolysis of RelA,downregulation of miR-9,and activation of CXCR4/TXNIP/NLRP3 pathway played an essential role in AFB_(1)-induced glomerular podocyte inflammation.Our study revealed a novel mechanism,via RelA,for the control of AFB_(1)’s nephrotoxicity,leading to an effective protection of food safety and public health. 展开更多
关键词 Aflatoxin B_(1) Podocyte inflammation miRNA-9 Chemokine(C-X-C motif)receptor 4 RelA ubiquitin-dependent degradation
下载PDF
Exploring the therapeutic potential of precision T-Cell Receptors (TCRs) in targeting KRAS G12D cancer through in vitro development
19
作者 WEITAO ZHENG DONG JIANG +8 位作者 SONGEN CHEN MEILING WU BAOQI YAN JIAHUI ZHAI YUNQIANG SHI BIN XIE XINGWANG XIE KANGHONG HU WENXUE MA 《Oncology Research》 SCIE 2024年第12期1837-1850,共14页
Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore... Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore innovative approaches in T cell receptor(TCR)engineering and characterization to target the KRAS G12D7-16 mutation,providing potential strategies for overcoming this therapeutic challenge.Methods:In this innovative study,we engineered and characterized two T cell receptors(TCRs),KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation.These TCRs were isolated from tumor-infiltrating lymphocytes(TILs)derived from tumor tissues of patients with the KRAS G12D mutation.We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.Results:KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope,significantly inducing IFN-γrelease and eliminating tumor cells without cross-reactivity or alloreactivity.Conclusions:The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation,showing potential for significant advancements in cancer immunotherapy. 展开更多
关键词 T cell receptor(TCR) TCR therapy Tumor-infiltrating lymphocytes(TILs) Kirsten rat sarcoma virus(KRAS) G12D ALLOREACTIVITY
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
20
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部