Traumatic brain injury (TBI) poses a significant socioeconomic burden in the world. The long lasting consequences in cognitive impairments are often underreported and its mechanisms are unclear. In this perspective,...Traumatic brain injury (TBI) poses a significant socioeconomic burden in the world. The long lasting consequences in cognitive impairments are often underreported and its mechanisms are unclear. In this perspective, cholinergic dysfunction and thera-peutic strategy targeting this will be reviewed. Novel agents that can target specific subtype of acetylcholine receptors have been developed over the recent years and are at various stages of development, which include AR-R 17779, GTS-21, SSR- 180711A, AR-R17779, and PNU-282987. A detailed review on this topic has been previously published (Shin and Dixon, 2015).展开更多
The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine re...The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which influence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to persistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in persistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer's disease.展开更多
The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their f...The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their fundamental role during the neuronal development. The in-depth histopathological/immunohistochemical examination of the autonomic nervous system performed at the “Lino Rossi” Research Center of the Milan University on a wide group of sudden unexpected fetal and infant deaths, highlighted the frequent hypodevelopment of brainstem structures checking the vital functions associated to altered expression of <i>α</i>7-nicotinic acetylcholine receptors and smoke absorption in pregnancy. A dysregulation of the catecholamine system was also observed in the cerebellar cortex of the same cases. However, in a not negligible percentage of sudden deaths with altered expression of <i>α</i>7-nicotinic receptors, the mothers never smoked but lived in rural areas. Specific analytical procedures showed the presence of agricultural pesticides in cerebral cortex samples of these victims. Therefore, it is possible to believe that the exposition to pesticides during pregnancy can produce the same harmful effects as nicotine on the nicotinic acetylcholine receptors. Moreover, alterations of <i>α</i>7-nicotinic acetylcholine receptors receptor expression were also detected in the lungs of many sudden perinatal death victims, allowing to consider even these findings as possible consequence of maternal exposure to toxic factors.展开更多
Autoradiography of nicotinic acetytcholine receptors(N-ACHR)with the application ofhistochemical staining location of cholinesterase was used to observe the effect of soman onjunctional and extrajunctional N-AChR.Test...Autoradiography of nicotinic acetytcholine receptors(N-ACHR)with the application ofhistochemical staining location of cholinesterase was used to observe the effect of soman onjunctional and extrajunctional N-AChR.Testing with the diaphragms and extensor digitorum longusmuscles of mice and rats,we found that soman mainly increased the number of extrajunctionalN-AChR.It did not alter the number of junctional N-AChR significantly,nor did it have any pro-nouneed effects on the gtycoprotein property and isoelectfic point(pI)of junctional andextrajunctional N-AChR.The change of extrajunctional N-AChR number caused by somanis similar to the phenomenon of increased extrajunctional N-AChR number and sensitivity resultingfrom denervation,but the mechanism of action is different from the latter.The increase ofN-AChR number is one of the important characteristics of soman poisoning which make it differ-ent from other nerve agents.To maintain the metabofic balance of N-AChR may be an importantnew approach to the treatment of soman poisoning.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction ...To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR)and sigma-1 receptor(σ1-R)could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson’s disease.In this context,the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA)543613 as an α7-nAChR agonist and 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate(PRE)-084 as aσ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson’s disease.The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion.Although no effect was noticed in the amphetamine-induced rotation test,our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15-20%),assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra.Furthermore,this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion,i.e,the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum,and the CD11b and glial fibrillary acidic protein staining in the substantia nigra.Hence,this study reports for the first time that concomitant activation of α7-nAChR andσ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation.The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19)validated this protocol(Authorization N°00434.02)on May 15,2014.展开更多
Objective: The purpose of this study was to investigate the effects of desensitized nicotinic receptors(n ACh Rs) on striatal dopaminergic system in the hemiparkinsonian rats treated with 6-hydroxydopamine(6-OHDA). Me...Objective: The purpose of this study was to investigate the effects of desensitized nicotinic receptors(n ACh Rs) on striatal dopaminergic system in the hemiparkinsonian rats treated with 6-hydroxydopamine(6-OHDA). Methods: We examined the effects of desensitized n ACh Rs on the levels of dopamine(DA) and its metabolites, m RNA expression of dopamine receptor D1,D2 and monoamine oxidase B(MAO-B) in the striatum of 6-OHDA-lesioned rats using high-performance liquid chromatography and reverse transcription-polymerase chain reaction. Results: The results showed that n ACh Rs desensitization following repeated nicotine stimulation could reverse significantly the decrease of striatal DA and its metabolites levels and the increase in DA turnover in lesioned side striatum of hemiparkinsonian rats. Dopamine D1 receptor m RNA expression increased significantly, whereas dopamine D2 receptor m RNA expression remained unchanged in lesioned side striatum of nicotine-treated rats compared to 6-OHDA-lesioned rats when n ACh Rs were desensitized. Meanwhile, nicotine-treated rats displayed a significant decrease in MAO-B m RNA expression in lesioned side striatum compared to 6-OHDA-lesioned rats after n ACh Rs desensitization. Conclusion: These results suggest that n ACh Rs desensitization could promote DA level, upregulate dopamine D1 receptor expression and downregulate MAO-B expression in striatum of hemiparkinsonian rats.展开更多
Nicotinic acetylcholine receptors(nChRs) are involved in the various pharmacological effects or disease states.In order to study the central nChRs by PET or SPECT,some radioligands have been investigated.In this paper...Nicotinic acetylcholine receptors(nChRs) are involved in the various pharmacological effects or disease states.In order to study the central nChRs by PET or SPECT,some radioligands have been investigated.In this paper,the procedure for synthesis of 2-[^18F] fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine(2-[^18F0-A-85380),a potential PET ligand for in vivo imaging nicotinic acetylcholine receptor was described.2-[^18F]-A-85380 was prepared from the precursor,2-nitro-3-[(1-(tert-butoxycarbonyl)-2-(S0-azetidinyl)methoxy] pyridine(4),which was synthesized with commercial (S)-2-zaetid-inecarboxylic acid as starting material.The whole procedure for radiosynthesis and purification was executed in about 1h and 45-55% of the added fluorine-18 was found in the purified 2-[^18F]-A-85380,with specific activity of 1.0-2.2×10^11 Bq/umol.展开更多
Glaucoma is a group of degenerative retinal diseases that damage the eye’s optic nerve and can result in vision loss and blindness.It is characterized by optic neuropathy,cupping of the optic disk.
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator...Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this...The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling...Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.展开更多
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce...BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.展开更多
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review...Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.展开更多
Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potentia...Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.展开更多
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea...Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.展开更多
Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechan...Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.展开更多
Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore...Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore innovative approaches in T cell receptor(TCR)engineering and characterization to target the KRAS G12D7-16 mutation,providing potential strategies for overcoming this therapeutic challenge.Methods:In this innovative study,we engineered and characterized two T cell receptors(TCRs),KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation.These TCRs were isolated from tumor-infiltrating lymphocytes(TILs)derived from tumor tissues of patients with the KRAS G12D mutation.We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.Results:KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope,significantly inducing IFN-γrelease and eliminating tumor cells without cross-reactivity or alloreactivity.Conclusions:The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation,showing potential for significant advancements in cancer immunotherapy.展开更多
文摘Traumatic brain injury (TBI) poses a significant socioeconomic burden in the world. The long lasting consequences in cognitive impairments are often underreported and its mechanisms are unclear. In this perspective, cholinergic dysfunction and thera-peutic strategy targeting this will be reviewed. Novel agents that can target specific subtype of acetylcholine receptors have been developed over the recent years and are at various stages of development, which include AR-R 17779, GTS-21, SSR- 180711A, AR-R17779, and PNU-282987. A detailed review on this topic has been previously published (Shin and Dixon, 2015).
基金supported by the Takeda Science Foundation and JSPS KAKENHI Grant Number 19590247
文摘The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer's disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which influence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to persistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in persistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer's disease.
文摘The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their fundamental role during the neuronal development. The in-depth histopathological/immunohistochemical examination of the autonomic nervous system performed at the “Lino Rossi” Research Center of the Milan University on a wide group of sudden unexpected fetal and infant deaths, highlighted the frequent hypodevelopment of brainstem structures checking the vital functions associated to altered expression of <i>α</i>7-nicotinic acetylcholine receptors and smoke absorption in pregnancy. A dysregulation of the catecholamine system was also observed in the cerebellar cortex of the same cases. However, in a not negligible percentage of sudden deaths with altered expression of <i>α</i>7-nicotinic receptors, the mothers never smoked but lived in rural areas. Specific analytical procedures showed the presence of agricultural pesticides in cerebral cortex samples of these victims. Therefore, it is possible to believe that the exposition to pesticides during pregnancy can produce the same harmful effects as nicotine on the nicotinic acetylcholine receptors. Moreover, alterations of <i>α</i>7-nicotinic acetylcholine receptors receptor expression were also detected in the lungs of many sudden perinatal death victims, allowing to consider even these findings as possible consequence of maternal exposure to toxic factors.
文摘Autoradiography of nicotinic acetytcholine receptors(N-ACHR)with the application ofhistochemical staining location of cholinesterase was used to observe the effect of soman onjunctional and extrajunctional N-AChR.Testing with the diaphragms and extensor digitorum longusmuscles of mice and rats,we found that soman mainly increased the number of extrajunctionalN-AChR.It did not alter the number of junctional N-AChR significantly,nor did it have any pro-nouneed effects on the gtycoprotein property and isoelectfic point(pI)of junctional andextrajunctional N-AChR.The change of extrajunctional N-AChR number caused by somanis similar to the phenomenon of increased extrajunctional N-AChR number and sensitivity resultingfrom denervation,but the mechanism of action is different from the latter.The increase ofN-AChR number is one of the important characteristics of soman poisoning which make it differ-ent from other nerve agents.To maintain the metabofic balance of N-AChR may be an importantnew approach to the treatment of soman poisoning.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金supported by Inserm(to SV,LFF,CT,JV,SB,SS,SC)by the Labex IRON(ANR-11-LABX-18-01:to all authors).
文摘To date there is no treatment able to stop or slow down the loss of dopaminergic neurons that characterizes Parkinson’s disease.It was recently observed in a rodent model of Alzheimer’s disease that the interaction between the α7 subtype of nicotinic acetylcholine receptor(α7-nAChR)and sigma-1 receptor(σ1-R)could exert neuroprotective effects through the modulation of neuroinflammation which is one of the key components of the pathophysiology of Parkinson’s disease.In this context,the aim of the present study was to assess the effects of the concomitant administration of N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide(PHA)543613 as an α7-nAChR agonist and 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate(PRE)-084 as aσ1-R agonist in a well-characterized 6-hydroxydopamine rat model of Parkinson’s disease.The animals received either vehicle separately or the dual therapy PHA/PRE once a day until day 14 postlesion.Although no effect was noticed in the amphetamine-induced rotation test,our data has shown that the PHA/PRE treatment induced partial protection of the dopaminergic neurons(15-20%),assessed by the dopamine transporter density in the striatum and immunoreactive tyrosine hydroxylase in the substantia nigra.Furthermore,this dual therapy reduced the degree of glial activation consecutive to the 6-hydroxydopamine lesion,i.e,the 18 kDa translocation protein density and glial fibrillary acidic protein staining in the striatum,and the CD11b and glial fibrillary acidic protein staining in the substantia nigra.Hence,this study reports for the first time that concomitant activation of α7-nAChR andσ1-R can provide a partial recovery of the nigro-striatal dopaminergic neurons through the modulation of microglial activation.The study was approved by the Regional Ethics Committee(CEEA Val de Loire n°19)validated this protocol(Authorization N°00434.02)on May 15,2014.
基金supported by a grant from the National Natural Science Foundations of China(30371641)
文摘Objective: The purpose of this study was to investigate the effects of desensitized nicotinic receptors(n ACh Rs) on striatal dopaminergic system in the hemiparkinsonian rats treated with 6-hydroxydopamine(6-OHDA). Methods: We examined the effects of desensitized n ACh Rs on the levels of dopamine(DA) and its metabolites, m RNA expression of dopamine receptor D1,D2 and monoamine oxidase B(MAO-B) in the striatum of 6-OHDA-lesioned rats using high-performance liquid chromatography and reverse transcription-polymerase chain reaction. Results: The results showed that n ACh Rs desensitization following repeated nicotine stimulation could reverse significantly the decrease of striatal DA and its metabolites levels and the increase in DA turnover in lesioned side striatum of hemiparkinsonian rats. Dopamine D1 receptor m RNA expression increased significantly, whereas dopamine D2 receptor m RNA expression remained unchanged in lesioned side striatum of nicotine-treated rats compared to 6-OHDA-lesioned rats when n ACh Rs were desensitized. Meanwhile, nicotine-treated rats displayed a significant decrease in MAO-B m RNA expression in lesioned side striatum compared to 6-OHDA-lesioned rats after n ACh Rs desensitization. Conclusion: These results suggest that n ACh Rs desensitization could promote DA level, upregulate dopamine D1 receptor expression and downregulate MAO-B expression in striatum of hemiparkinsonian rats.
文摘Nicotinic acetylcholine receptors(nChRs) are involved in the various pharmacological effects or disease states.In order to study the central nChRs by PET or SPECT,some radioligands have been investigated.In this paper,the procedure for synthesis of 2-[^18F] fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine(2-[^18F0-A-85380),a potential PET ligand for in vivo imaging nicotinic acetylcholine receptor was described.2-[^18F]-A-85380 was prepared from the precursor,2-nitro-3-[(1-(tert-butoxycarbonyl)-2-(S0-azetidinyl)methoxy] pyridine(4),which was synthesized with commercial (S)-2-zaetid-inecarboxylic acid as starting material.The whole procedure for radiosynthesis and purification was executed in about 1h and 45-55% of the added fluorine-18 was found in the purified 2-[^18F]-A-85380,with specific activity of 1.0-2.2×10^11 Bq/umol.
文摘Glaucoma is a group of degenerative retinal diseases that damage the eye’s optic nerve and can result in vision loss and blindness.It is characterized by optic neuropathy,cupping of the optic disk.
基金supported by the National Nature Science Foundation of China(No.81873694)the Key Research and Development Program of Hubei Province(No.2022BCA005)Knowledge Innovation Program of Wuhan Basic Research(No.2022020801010446).
文摘Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金This work was supported by the National Natural Science Foundation of China(32202278)the Chongqing Special Postdoctoral Science Foundation of Chinathe earmarked fund for China Agricultural Research System(CARS-26)。
文摘The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金This work was supported by grants from the National Natural Science Foundation of China(No.82304000).
文摘Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.
基金The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of University of Campania Luigi Vanvitelli(Protocol code 795 on December 23,2019).
文摘BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.
基金the financial support provided by“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C020122022C02078)。
文摘Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.
基金supported by grants from the Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201010165)the Key Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201020335).
文摘Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
基金This study was supported by grants from the Science and Technology Innovation Fund Project of Dalian(No.2021JJ13SN55).
文摘Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.
文摘Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity.
基金funded by the key R&D Project of Hubei Province(Social Development),China(2022BCA018)the Cooperative Innovation Center of Industrial Fermentation(Ministry of Education&Hubei Province),China(2022KF16)to Kanghong Hu.
文摘Objectives:The Kirsten rat sarcoma virus(KRAS)G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions.This study aims to explore innovative approaches in T cell receptor(TCR)engineering and characterization to target the KRAS G12D7-16 mutation,providing potential strategies for overcoming this therapeutic challenge.Methods:In this innovative study,we engineered and characterized two T cell receptors(TCRs),KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation.These TCRs were isolated from tumor-infiltrating lymphocytes(TILs)derived from tumor tissues of patients with the KRAS G12D mutation.We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.Results:KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope,significantly inducing IFN-γrelease and eliminating tumor cells without cross-reactivity or alloreactivity.Conclusions:The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation,showing potential for significant advancements in cancer immunotherapy.