In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The ...In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The total concentration of Cd, Hg, Cu,Pb and As in the samples were analyzed.The potential ecological risk was used to evaluatethe heavy metals pollution.The investigation reveals that the reclaimed soils are contaminatedto a certain degree and the trace elements in coal gangue transferred to thesurface soil.The order of potential ecological risk is Cd>Hg>Cu>Pb>As; the pollution degreeof each sampling site is arranged in the following order: Xinzhuangzi Mine>DatongMine>Panyi Mine, and the multiform of heavy metals of potential ecological risk index is at357.35~484.62.展开更多
Exogenous humus can change the content and migration activity of cadmium(Cd)in soil.Humic acid(HA)is an important soluble humus component in soil.In order to explore the relationship between cadmium pollution mechanis...Exogenous humus can change the content and migration activity of cadmium(Cd)in soil.Humic acid(HA)is an important soluble humus component in soil.In order to explore the relationship between cadmium pollution mechanism and ecological environment of humic acid in reclaimed soil,the characteristics of humic acid adsorbing cadmium in alkaline conditions were studied.This study employed reclaimed soil from the Huainan mining area,China.The adsorption and desorption characteristics as well as influence mechanisms on the heavy metal cadmium(Cd)were explored under the influence of HA.The results show that:(1)When Cd concentration was low(0.2–10 mg/L),HA had little effect on Cd adsorption and desorption in reclaimed soil.When the Cd concentration was high(15–80 mg/L),HA had a great influence on the adsorption and desorption of Cd in reclaimed soil.The addition of HA can inhibit the adsorption of Cd by reclaimed soil and effectively improve the desorption capacity of Cd by reclaimed soil.(2)The kinetic curves of Cd adsorption and desorption of reclaimed soil with added HA show that both processes(adsorption and desorption)include two stages:rapid reaction and slow reaction.The adsorption of Cd by reclaimed soil under the influence of HA was 18.18%lower than that of normal reclaimed soil,and the increase of Cd desorption was 50.29%.(3)The factors affecting the adsorption and desorption of Cd in the soil were analyzed with gray theory,and their importance can be ordered as follows:Cd concentration>HA concentration>pH>temperature.Considering the influence of HA,a multi-factor coupling function model of adsorption and desorption of Cd in soil is established.This model provides theoretical guidance for the scientific prediction and evaluation of Cd environmental pollution risks in soil and will be useful for developing a new solution for engineering remediation of high concentration Cd contaminated soil.展开更多
Chloride ion transport in reclaimed soil solutions filled with fly ash (FA) was investigated by measuring the hydraulic parameters (i,e. water retention curves and hydraulic conductivity) of three substrates, name...Chloride ion transport in reclaimed soil solutions filled with fly ash (FA) was investigated by measuring the hydraulic parameters (i,e. water retention curves and hydraulic conductivity) of three substrates, namely GSL, GFA, and CFA. Similar simulations were carried out under certain weather conditions. The different boundary conditions of chloride transport were also discussed from FA texture, cover soil thickness, groundwater table level, and initial chloride concentration. Furthermore, the sensitivities of chloride ions to these effect factors were analyzed. The results show that the different top soil thickness and initial chloride concentration have no effect on salinity of topsoil solution in the monitoring points, but they can clearly change the chloride concentration of FA layers. The sensibilities from top soil thickness and initial chloride content are exceedingly weak to the salinity balance based on two dimensions of the time and concentration. While the different FA texture and groundwater table not only affect the salinity equilibrium process of the whole reclaimed soil profile, but also change its balance state. Generally, coarse FA particles and high groundwater table can defer the salinity balance process of the reclaimed soil solution, and they also increase the chloride concentration of FA layer solutions, and even topsoil ones.展开更多
Through a pot experiment, effects of various microbial inoculums on soil microbial diversity and enzyme activity in a typical reclaimed mining area in Shanxi Province were discussed based on quantitative analysis of P...Through a pot experiment, effects of various microbial inoculums on soil microbial diversity and enzyme activity in a typical reclaimed mining area in Shanxi Province were discussed based on quantitative analysis of PLFA, soil urease, phosphatase and sucrase activity. The results showed that the application of microbial inoculums increased microorganism quantity in rhizosphere of rape by 2.3% -66.4%, and quantities of bac- teria, gram-positive bacteria, gram-negative bacteria, fungi and actinomycetes in the treatments with microbial inoculums were significantly higher than the contrast (P 〈0.05), while there was no obvious change in protist quantity. In comparison with the contrast, the application of various mi- crobial inoculums also improved soil urease, sucrase and phosphatase activity by 4.2% - 61.4%, 18.0% - 32.5% and 64.2% - 199.0% respec- tively. It indicated that the application of microbial inoculums can improve soil microbial diversity and enzyme activity, so it is an effective way to sl^eed UP ecoloQical restoration of soil.展开更多
A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order...A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order to study the fertility characteristics and fertilizer requirements of the newly reclaimed soil. The field experiments included that on nutrient characteristics and fertilizer effect, that on K-supplying potential and K-Mg relationship, that on fertilization rates of K and N, etc. The newly reclaimed upland soil was low in both N and P, and its responses to nitrogen and phosphate application were very significant. The K-supplying potential was also low, so the soil was highly responsive to K fertilizer. The effect of Ca and Mg fertilizers was not so great for the reason that certain amounts of Ca and Mg were incorporated into the soil through application of calcium magnesium phosphate during land leveling before the experiments. Among the four micronutrients, B, Mo, Zn and Cu, B had the greatest effect on the soil. The fertilizer requirements of the soil were in an order of P and N > K > lime and B > Mg > Mo, Zn and Cu. Eight crops tested had different fertilizer-requiring characteristics. Rapeseed was very sensitive to P and B fertilizers. Barely was especially sensitive to P and lime and it also responded to B, Mo, Zn and Cu. And sweet potato was especially sensitive to K.展开更多
In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of...In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.展开更多
Reclaimed mined lands provide an excellent opportunity to sequester carbon and combat global warming. Carbon sequestration on reclaimed sites depend on age of reclamation, composition of species, geomining conditions ...Reclaimed mined lands provide an excellent opportunity to sequester carbon and combat global warming. Carbon sequestration on reclaimed sites depend on age of reclamation, composition of species, geomining conditions (soil characteristics) and prevailing climate. The aims of the present study were to calculate carbon (C)--stock of biomass of 4 years old plantation (dominated by Albizia lebbeck, Dalbergia sissoo and Bambusa arundinacea), understorey vegetation and litter, soil organic carbon in reclaimed minesoil (RMS) and compare with reference forest site. Allometric equation was used for the estimation of biomass C stock and found 13.0 Mg C ha i (A lebbeck 7.8 Mg C ha-I, D sissoo 3.5 Mg C ha-l and B. arundincea 1.2 Mg C ha-l), while stock of understorey vegetation was 0.98 Mg C ha-~. In RMS, C stock was 16.3 Mg C ha-1, out of which inorganic C contributed 1.7 g kg-l (8 % of total soil C), Coal C 8.7 g kg^-1 (43 % of total soil C) and biogenic C 9.8 g kg^-1 (49 % of total soil C). Total C stock in reclaimed site was calculated as 30.3 Mg C ha^-1(equivalent to 111 Mg CO2 ha-b. The study concluded that (i) coal C is responsible for overestimation of C stock in RMS (ii) Maximun C stock stored in aboveground biomass component and (iii) reclaimed mined lands will take approximately 17 years to reach the level of C stock of reference forest site in dry tropical climate.展开更多
The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the ...The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the study of heavy metals due to the relative high pollutant concentrations in wetlands. To understand the impact of land use change on heavy metal and arsenic (As) geochemistry by the reclamation of wetlands for agriculture, surface soils and soil profiles were collected from the agricultural land reclaimed in the 1990s and the intertidal flat wetland at Dongtan on Chongming Island in the Yangtze River Estuary, China. The soil samples were analyzed for total concentrations and chemical speciation of chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd) and As using inductively coupled plasma mass spectrometry (ICP-MS). Results showed that soil properties (salinity, total organic carbon and grain-size distribution) and the concentrations of heavy metals and As in the soils differed under the different land use types. The conversion of wetland to forest had caused obvious losses of all the measured heavy metals. In paddy field and dryland with frequent cultivation, the concentrations of Cr, Zn, Cu, Ni and As were higher when compared to forest land which was disturbed rarely by human activities. Speciation analysis showed that Cr, Zn, Cu, Ni and As were predominated by the immobile residual fraction, while Pb and Cd showed relatively higher mobility. In general, metal (except Ni) and As mobility decreased in the following order: wetland 〉 dryland 〉 paddy field 〉 forest land, which suggested that the reclaimed soils had lower metal and As mobility than the intertidal fiat wetland. The results of this study contribute to a better understanding of the effects of land use on heavy metals and As in the reclaimed soils of the study area and other similar coastal areas.展开更多
Generally,soil moisture and salinity in reclaimed land are monitored using soil dielectric sensors such as time domain reflectometry,frequency domain reflectometry,and capacitance.The soil dielectric sensor measures a...Generally,soil moisture and salinity in reclaimed land are monitored using soil dielectric sensors such as time domain reflectometry,frequency domain reflectometry,and capacitance.The soil dielectric sensor measures apparent dielectric permittivity.However,apparent dielectric permittivity is affected by soil moisture,salinity,and texture.In this study,performance evaluation and calibration of a dielectric sensor(5TE;METER Group,Inc.,Pullman,WA,USA)for monitoring soil salinity were performed.Laboratory calibration tests were completed,incorporating various levels of dry density,water content,and salinity.The soil salinity was determined by the electrical conductivity(EC)1:5 method.The volumetric water content as measured by the sensor was affected by dry density and water content.Generally,it linearly increased as dry density and water content increased.However,when dry density or water content was high,the measured value of the sensor increased nonlinearly.The bulk EC measured by sensor had no specific correlation with EC 1:5.The EC 1:5 measurement had a linear relationship with the gradient ofθandθs.Therefore,it can be estimated with a simple linear equation usingθfrom the soil test andθs from the capacitance sensor.The R 2 value of the EC 1:5 estimation equation was 0.98.The proposed equation requiresθfrom the gravimetric sample andθs from the sensor.Therefore,in the case of monitoring salinity using a sensor,it is recommended to measure the water content with a tensiometer.展开更多
基金Supported by the Natural Science Foundation of China of Anhui Education to Research(KJ2009A088)
文摘In order to determine the environmental quality condition of reclaimed soils inHuainan mining area, soil samples were collected from three representative mines, suchas Panyi Mine, Xinzhuangzi Mine and Datong Mine.The total concentration of Cd, Hg, Cu,Pb and As in the samples were analyzed.The potential ecological risk was used to evaluatethe heavy metals pollution.The investigation reveals that the reclaimed soils are contaminatedto a certain degree and the trace elements in coal gangue transferred to thesurface soil.The order of potential ecological risk is Cd>Hg>Cu>Pb>As; the pollution degreeof each sampling site is arranged in the following order: Xinzhuangzi Mine>DatongMine>Panyi Mine, and the multiform of heavy metals of potential ecological risk index is at357.35~484.62.
基金This research was supported by the National Natural Science Foundation of China(No.51904014)the Natural Science Research Project of University in Anhui Province(No.KJ2018A0072)the Postdoctoral Foundation of Anhui Province(No.2019B337).
文摘Exogenous humus can change the content and migration activity of cadmium(Cd)in soil.Humic acid(HA)is an important soluble humus component in soil.In order to explore the relationship between cadmium pollution mechanism and ecological environment of humic acid in reclaimed soil,the characteristics of humic acid adsorbing cadmium in alkaline conditions were studied.This study employed reclaimed soil from the Huainan mining area,China.The adsorption and desorption characteristics as well as influence mechanisms on the heavy metal cadmium(Cd)were explored under the influence of HA.The results show that:(1)When Cd concentration was low(0.2–10 mg/L),HA had little effect on Cd adsorption and desorption in reclaimed soil.When the Cd concentration was high(15–80 mg/L),HA had a great influence on the adsorption and desorption of Cd in reclaimed soil.The addition of HA can inhibit the adsorption of Cd by reclaimed soil and effectively improve the desorption capacity of Cd by reclaimed soil.(2)The kinetic curves of Cd adsorption and desorption of reclaimed soil with added HA show that both processes(adsorption and desorption)include two stages:rapid reaction and slow reaction.The adsorption of Cd by reclaimed soil under the influence of HA was 18.18%lower than that of normal reclaimed soil,and the increase of Cd desorption was 50.29%.(3)The factors affecting the adsorption and desorption of Cd in the soil were analyzed with gray theory,and their importance can be ordered as follows:Cd concentration>HA concentration>pH>temperature.Considering the influence of HA,a multi-factor coupling function model of adsorption and desorption of Cd in soil is established.This model provides theoretical guidance for the scientific prediction and evaluation of Cd environmental pollution risks in soil and will be useful for developing a new solution for engineering remediation of high concentration Cd contaminated soil.
基金Supported by the National Natural Science Foundation of China (51274013) the International Cooperation Projects of Anhui, China (10080703026) Acknowledgements We thank the work group of soil information systems and solute transport models from Osnabrueck University of Applied Sciences, Germany for providing us their experimental work.
文摘Chloride ion transport in reclaimed soil solutions filled with fly ash (FA) was investigated by measuring the hydraulic parameters (i,e. water retention curves and hydraulic conductivity) of three substrates, namely GSL, GFA, and CFA. Similar simulations were carried out under certain weather conditions. The different boundary conditions of chloride transport were also discussed from FA texture, cover soil thickness, groundwater table level, and initial chloride concentration. Furthermore, the sensitivities of chloride ions to these effect factors were analyzed. The results show that the different top soil thickness and initial chloride concentration have no effect on salinity of topsoil solution in the monitoring points, but they can clearly change the chloride concentration of FA layers. The sensibilities from top soil thickness and initial chloride content are exceedingly weak to the salinity balance based on two dimensions of the time and concentration. While the different FA texture and groundwater table not only affect the salinity equilibrium process of the whole reclaimed soil profile, but also change its balance state. Generally, coarse FA particles and high groundwater table can defer the salinity balance process of the reclaimed soil solution, and they also increase the chloride concentration of FA layer solutions, and even topsoil ones.
基金Supported by the International Science and Technology Cooperation Program of China(2011DFR31230)Major Science and Technology Project of Shanxi Province,China(20121101009)Key Project of Shanxi Academy of Agricultural Sciences,China(2013zd12)
文摘Through a pot experiment, effects of various microbial inoculums on soil microbial diversity and enzyme activity in a typical reclaimed mining area in Shanxi Province were discussed based on quantitative analysis of PLFA, soil urease, phosphatase and sucrase activity. The results showed that the application of microbial inoculums increased microorganism quantity in rhizosphere of rape by 2.3% -66.4%, and quantities of bac- teria, gram-positive bacteria, gram-negative bacteria, fungi and actinomycetes in the treatments with microbial inoculums were significantly higher than the contrast (P 〈0.05), while there was no obvious change in protist quantity. In comparison with the contrast, the application of various mi- crobial inoculums also improved soil urease, sucrase and phosphatase activity by 4.2% - 61.4%, 18.0% - 32.5% and 64.2% - 199.0% respec- tively. It indicated that the application of microbial inoculums can improve soil microbial diversity and enzyme activity, so it is an effective way to sl^eed UP ecoloQical restoration of soil.
基金Project supported by the Potash & Phosphate Institute (PPI/PPIC), Canada.
文摘A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order to study the fertility characteristics and fertilizer requirements of the newly reclaimed soil. The field experiments included that on nutrient characteristics and fertilizer effect, that on K-supplying potential and K-Mg relationship, that on fertilization rates of K and N, etc. The newly reclaimed upland soil was low in both N and P, and its responses to nitrogen and phosphate application were very significant. The K-supplying potential was also low, so the soil was highly responsive to K fertilizer. The effect of Ca and Mg fertilizers was not so great for the reason that certain amounts of Ca and Mg were incorporated into the soil through application of calcium magnesium phosphate during land leveling before the experiments. Among the four micronutrients, B, Mo, Zn and Cu, B had the greatest effect on the soil. The fertilizer requirements of the soil were in an order of P and N > K > lime and B > Mg > Mo, Zn and Cu. Eight crops tested had different fertilizer-requiring characteristics. Rapeseed was very sensitive to P and B fertilizers. Barely was especially sensitive to P and lime and it also responded to B, Mo, Zn and Cu. And sweet potato was especially sensitive to K.
基金Supported by the China Postdoctoral Science Foundation of China (20060400532, 2006DS08018)
文摘In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.
文摘Reclaimed mined lands provide an excellent opportunity to sequester carbon and combat global warming. Carbon sequestration on reclaimed sites depend on age of reclamation, composition of species, geomining conditions (soil characteristics) and prevailing climate. The aims of the present study were to calculate carbon (C)--stock of biomass of 4 years old plantation (dominated by Albizia lebbeck, Dalbergia sissoo and Bambusa arundinacea), understorey vegetation and litter, soil organic carbon in reclaimed minesoil (RMS) and compare with reference forest site. Allometric equation was used for the estimation of biomass C stock and found 13.0 Mg C ha i (A lebbeck 7.8 Mg C ha-I, D sissoo 3.5 Mg C ha-l and B. arundincea 1.2 Mg C ha-l), while stock of understorey vegetation was 0.98 Mg C ha-~. In RMS, C stock was 16.3 Mg C ha-1, out of which inorganic C contributed 1.7 g kg-l (8 % of total soil C), Coal C 8.7 g kg^-1 (43 % of total soil C) and biogenic C 9.8 g kg^-1 (49 % of total soil C). Total C stock in reclaimed site was calculated as 30.3 Mg C ha^-1(equivalent to 111 Mg CO2 ha-b. The study concluded that (i) coal C is responsible for overestimation of C stock in RMS (ii) Maximun C stock stored in aboveground biomass component and (iii) reclaimed mined lands will take approximately 17 years to reach the level of C stock of reference forest site in dry tropical climate.
基金supported by the National Natural Science Foundation of China (Nos. 41271466 and 40871216)
文摘The reclamation of tidal fiats has been one of the important approaches to replenish the arable lands in the coastal areas; pollution status of reclaimed soils has received wide attention recently, especially for the study of heavy metals due to the relative high pollutant concentrations in wetlands. To understand the impact of land use change on heavy metal and arsenic (As) geochemistry by the reclamation of wetlands for agriculture, surface soils and soil profiles were collected from the agricultural land reclaimed in the 1990s and the intertidal flat wetland at Dongtan on Chongming Island in the Yangtze River Estuary, China. The soil samples were analyzed for total concentrations and chemical speciation of chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd) and As using inductively coupled plasma mass spectrometry (ICP-MS). Results showed that soil properties (salinity, total organic carbon and grain-size distribution) and the concentrations of heavy metals and As in the soils differed under the different land use types. The conversion of wetland to forest had caused obvious losses of all the measured heavy metals. In paddy field and dryland with frequent cultivation, the concentrations of Cr, Zn, Cu, Ni and As were higher when compared to forest land which was disturbed rarely by human activities. Speciation analysis showed that Cr, Zn, Cu, Ni and As were predominated by the immobile residual fraction, while Pb and Cd showed relatively higher mobility. In general, metal (except Ni) and As mobility decreased in the following order: wetland 〉 dryland 〉 paddy field 〉 forest land, which suggested that the reclaimed soils had lower metal and As mobility than the intertidal fiat wetland. The results of this study contribute to a better understanding of the effects of land use on heavy metals and As in the reclaimed soils of the study area and other similar coastal areas.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(NRF-2014R1A2A1A11051680)the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,Forestry&Fisheriesand the Ministry of Agriculture,Food and Rural Affairs(114147-3).
文摘Generally,soil moisture and salinity in reclaimed land are monitored using soil dielectric sensors such as time domain reflectometry,frequency domain reflectometry,and capacitance.The soil dielectric sensor measures apparent dielectric permittivity.However,apparent dielectric permittivity is affected by soil moisture,salinity,and texture.In this study,performance evaluation and calibration of a dielectric sensor(5TE;METER Group,Inc.,Pullman,WA,USA)for monitoring soil salinity were performed.Laboratory calibration tests were completed,incorporating various levels of dry density,water content,and salinity.The soil salinity was determined by the electrical conductivity(EC)1:5 method.The volumetric water content as measured by the sensor was affected by dry density and water content.Generally,it linearly increased as dry density and water content increased.However,when dry density or water content was high,the measured value of the sensor increased nonlinearly.The bulk EC measured by sensor had no specific correlation with EC 1:5.The EC 1:5 measurement had a linear relationship with the gradient ofθandθs.Therefore,it can be estimated with a simple linear equation usingθfrom the soil test andθs from the capacitance sensor.The R 2 value of the EC 1:5 estimation equation was 0.98.The proposed equation requiresθfrom the gravimetric sample andθs from the sensor.Therefore,in the case of monitoring salinity using a sensor,it is recommended to measure the water content with a tensiometer.