期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
An attribute recognition model based on entropy weight for evaluating the quality of groundwater sources 被引量:21
1
作者 CHEN Suo-zhong WANG Xiao-jing ZHAO Xiu-jun 《Journal of China University of Mining and Technology》 EI 2008年第1期72-75,共4页
In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by ... In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model. 展开更多
关键词 water quality evaluation groundwater sources entropy weigh attribute recognition model
下载PDF
Risk assessment of water inrush in tunnels based on attribute interval recognition theory 被引量:4
2
作者 WANG Sheng LI Li-ping +3 位作者 CHENG Shuai HU Hui-jiang ZHANG Ming-guang WEN Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期517-530,共14页
Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory... Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem. 展开更多
关键词 water inrush risk assessment attribute interval recognition model TFN-AHP
下载PDF
Comprehensive Assessment of Seawater Quality Based on an Improved Attribute Recognition Model 被引量:4
3
作者 ZHANG Libing CHENG Jilin +1 位作者 JIN Juliang JIANG Xiaohong 《Journal of Ocean University of China》 SCIE CAS 2006年第4期300-304,共5页
The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that th... The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that the value of weight vector has no relativity to its initial value but depends on the data of Quality Standard and actual samples. In the present study, the ARM is enhanced with the technique of data driving, which means some more groups of data from the Quality Standard are selected with the uniform random method to make the calculation of weight values more rational and more scientific. This improved attribute recognition model (IARM) is applied to a real case of assessment on seawater quality. The given example shows that the IARM has the merits of being simple in principle, easy to operate, and capable of producing objective results, and is therefore of use in evaluation problems in marine environment science. 展开更多
关键词 comprehensive assessment seawater quality improved attribute recognition model
下载PDF
Online hierarchical recognition method for target tactical intention in beyond-visual-range air combat 被引量:2
4
作者 Zhen Yang Zhi-xiao Sun +3 位作者 Hai-yin Piao Ji-chuan Huang De-yun Zhou Zhang Ren 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1349-1361,共13页
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp... Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat. 展开更多
关键词 Beyond-visual-range(BVR)air combat Tactical intention recognition Hierarchical recognition model Cascaded support vector machine(CSVM) Trajectory decomposition Maneuver element
下载PDF
Cold Start Problem of Vehicle Model Recognition under Cross-Scenario Based on Transfer Learning 被引量:1
5
作者 Hongbo Wang Qian Xue +2 位作者 Tong Cui Yangyang Li Huacheng Zeng 《Computers, Materials & Continua》 SCIE EI 2020年第4期337-351,共15页
As a major function of smart transportation in smart cities,vehicle model recognition plays an important role in intelligent transportation.Due to the difference among different vehicle models recognition datasets,the... As a major function of smart transportation in smart cities,vehicle model recognition plays an important role in intelligent transportation.Due to the difference among different vehicle models recognition datasets,the accuracy of network model training in one scene will be greatly reduced in another one.However,if you don’t have a lot of vehicle model datasets for the current scene,you cannot properly train a model.To address this problem,we study the problem of cold start of vehicle model recognition under cross-scenario.Under the condition of small amount of datasets,combined with the method of transfer learning,load the DAN(Deep Adaptation Networks)and JAN(Joint Adaptation Networks)domain adaptation modules into the convolutional neural network AlexNet and ResNet,and get four models:AlexNet-JAN,AlexNet-DAN,ResNet-JAN,and ResNet-DAN which can achieve a higher accuracy at the beginning.Through experiments,transfer the vehicle model recognition from the network image dataset(source domain)to the surveillance-nature dataset(target domain),both Top-1 and Top-5 accuracy have been improved by at least 20%. 展开更多
关键词 Vehicle model recognition transfer learning cold start and artificial intelligence
下载PDF
Sika Deer Facial Recognition Model Based on SE-ResNet
6
作者 He Gong Lin Chen +6 位作者 Haohong Pan Shijun Li Yin Guo Lili Fu Tianli Hu Ye Mu Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2022年第9期6015-6027,共13页
The scale of deer breeding has gradually increased in recent years and better information management is necessary,which requires the identification of individual deer.In this paper,a deer face dataset is produced usin... The scale of deer breeding has gradually increased in recent years and better information management is necessary,which requires the identification of individual deer.In this paper,a deer face dataset is produced using face images obtained from different angles,and an improved residual neural network(ResNet)-based recognition model is proposed to extract the features of deer faces,which have high similarity.The model is based on ResNet-50,which reduces the depth of the model,and the network depth is only 29 layers;the model connects Squeeze-and-Excitation(SE)modules at each of the four layers where the channel changes to improve the quality of features by compressing the feature information extracted through the entire layer.A maximum pooling layer is used in the ResBlock shortcut connection to reduce the information loss caused by messages passing through the ResBlock.The Rectified Linear Unit(ReLU)activation function in the network is replaced by the Exponential Linear Unit(ELU)activation function to reduce information loss during forward propagation of the network.The preprocessed 6864 sika deer face dataset was used to train the recognition model based on SEResnet,which is demonstrated to identify individuals accurately.By setting up comparative experiments under different structures,the model reduces the amount of parameters,ensures the accuracy of the model,and improves the calculation speed of the model.Using the improved method in this paper to compare with the classical model and facial recognition models of different animals,the results show that the recognition effect of this research method is the best,with an average recognition accuracy of 97.48%.The sika deer face recognition model proposed in this study is effective.The results contribute to the practical application of animal facial recognition technology in the breeding of sika deer and other animals with few distinct facial features. 展开更多
关键词 Sika deer facial recognition model ResNet-50 se module shortcut connection ELU
下载PDF
A New Computer Aided Volleyball Training System Based on Pattern Recognition Model
7
《International Journal of Technology Management》 2017年第3期20-22,共3页
This paper proposes the novel computer aided volleyball training system based on pattern recognition model. In general the quality of volleyball training at the same time, we should strengthen coordination, mobile pow... This paper proposes the novel computer aided volleyball training system based on pattern recognition model. In general the quality of volleyball training at the same time, we should strengthen coordination, mobile power, quality training, strengthen mobile exercises, moving fast and flexible to overcome the sudden fall of soft volleyball on the defensive and pilling adverse, such practice can be used for mobile.Strengthen the strength training, enhance the strength of the upper and lower limbs, improve the team' s bounce and batting speed is conducive to compete for the advantage of the Internet, better undermine the defense. With the help of the proposed system, the training process will be more effective, and the performance will be verified in the later discussions. 展开更多
关键词 Computer Aided Volleyball Training Pattern recognition Model
下载PDF
Method to generate training samples for neural network used in target recognition
8
作者 何灏 罗庆生 +2 位作者 罗霄 徐如强 李钢 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期400-407,共8页
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth... Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough. 展开更多
关键词 pattern recognition training samples for neural network model emulation space coordinate transform invariant moments
下载PDF
Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush 被引量:4
9
作者 Xin Wang Zhimin Xu +3 位作者 Yajun Sun Jieming Zheng Chenghang Zhang Zhongwen Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期853-866,共14页
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D... As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%. 展开更多
关键词 Mine water inrush Automatic monitoring Real-time warning recognition model
下载PDF
Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways 被引量:15
10
作者 Meng Qingbin Han Lijun +3 位作者 Xiao Yu Li Hao Wen Shengyong Zhang Jian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期209-221,共13页
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ... Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways. 展开更多
关键词 Deep soft rock roadway Evolutionary process Failure model Numerical simulation Model recognition
下载PDF
Rapid determination of tannin in Danshen and Guanxinning injections using UV spectrophotometry for quality control 被引量:1
11
作者 Hongxia Huang Yuanyuan Lv +3 位作者 Xiaoyi Sun Shuangshuang Fu Xuefang Lou Zengmei Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第6期33-42,共10页
A technique for the determination of tannin content in traditional Chinese medicine injections(TCMI)was developed based on ultraviolet(UV)spectroscopy.Chemometrics were used to construct a mathematical model of absorp... A technique for the determination of tannin content in traditional Chinese medicine injections(TCMI)was developed based on ultraviolet(UV)spectroscopy.Chemometrics were used to construct a mathematical model of absorption spectrum and tannin reference content of Danshen and Guanxinning injections,and the model was veried and applied.The results showed that the established UV-based spectral partial least squares regression(PLS)tannin content model performed well with a correlation coefficient(r)of 0.952,root mean square error of calibration(RMSEC)of 0.476g/ml,root mean square error of validation(RMSEV)of 1.171g/ml,and root mean square error of prediction(RMSEP)of 0.465g/ml.Pattern recognition models using linear discriminant analysis(LDA)and k nearest neighbor(k-NN)classiers based on UV spectrum could successfully classify different types of injections and different manufacturers.The established method to measure tannin content based on UV spectroscopy is simple,rapid and reliable and provides technical support for quality control of tannin in Chinese medicine injections. 展开更多
关键词 Ultraviolet spectrum tannin content traditional Chinese medicine injection pattern recognition model partial least squares regression
下载PDF
An Alternative-Service Recommending Algorithm Based on Semantic Similarity 被引量:2
12
作者 Kun Guo Yonghua Li Yueming Lu 《China Communications》 SCIE CSCD 2017年第8期124-136,共13页
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro... With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%. 展开更多
关键词 activity recognition semantic model service recommendation unavailable service
下载PDF
REVERSE MODELING FOR CONIC BLENDING FEATURE
13
作者 Fan Shuqian Ke Yinglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期482-489,共8页
A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segme... A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method. 展开更多
关键词 Computer-aided design Reverse engineering Feature recognition Geometric modeling Statistic theory Blending surface
下载PDF
A study on continuous Chinese speech recognition based on stochastic trajectory models
14
作者 MA Xiaohui(Department of Radio Engineering Southeast University Nanjing 210096)GONG Yifan(CRIN/CNRS France)FU Yuqing LU Jiren(Department of Radio Engineering Southeast University Nanjing 210096) 《Chinese Journal of Acoustics》 1997年第4期350-355,共6页
After pointed the unreasonableness of the three basic assumptions contained in HMM, we introduce the theory and the advantage of Stochastic najectory Models (STMs) that possibly resolve these problems caused by HMM as... After pointed the unreasonableness of the three basic assumptions contained in HMM, we introduce the theory and the advantage of Stochastic najectory Models (STMs) that possibly resolve these problems caused by HMM assumptions. In STM, the acoustic observations of an acoustic unit are represented as clusters of trajectories in a parameter space.The trajectories are modelled by mixture of probability density functions of random sequence of states. After analyzing the characteristics of Chinese speech, the acoustic units for continuous Chinese speech recognition based on STM are discussed and phone-like units are suggested. The performance of continuous Chinese speech recognition based on STM is studied on VINICS system. The experimental results prove the efficiency of STM and the consistency of phone-like units. 展开更多
关键词 IEEE ACTA A study on continuous Chinese speech recognition based on stochastic trajectory models
原文传递
A method for detecting miners based on helmets detection in underground coal mine videos
15
作者 Cai Limei Qian Jiansheng 《Mining Science and Technology》 EI CAS 2011年第4期553-556,共4页
In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets... In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets and their background.We constructed standard images of helmets,extracted four directional features,modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes.Out experimental results show that this method can detect helmets effectively.The detection rate was 83.7%. 展开更多
关键词 Human detection Helmet detection Coal mine Gaussian model Image pattern recognition
下载PDF
Molecular Dynamic Study for Chiral Discrimination of α-Phenylethylamine by Modified Cyclodextrin in Gas Chromatography
16
作者 Meng Yan NIE Liang Mo ZHOU +1 位作者 Qing Hai WANG Dao Qian ZHU (Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116012) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第4期347-350,共4页
A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a-phenylethylamine on heptakis (2.6-di-O-butyl-3-O-butyryl)-β- cyclodextrin in gas chromatography. The ... A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a-phenylethylamine on heptakis (2.6-di-O-butyl-3-O-butyryl)-β- cyclodextrin in gas chromatography. The modelling data correlated with the chromatographic elution order and indicated that the preferred site of α-phenylethylamine is the interior of cavity. 展开更多
关键词 Molecular modelling. modified cyclodextrin. chiral recognition.
下载PDF
A modified resonant recognition model to predict protein-protein interaction
17
作者 LIU Xiang WANG Yifei 《Frontiers in Biology》 CSCD 2007年第3期268-271,共4页
Proteins are fundamental components of all living cells and the protein-protein interaction plays an important role in vital movement.This paper briefly introduced the original Resonant Recognition Model(RRM),and then... Proteins are fundamental components of all living cells and the protein-protein interaction plays an important role in vital movement.This paper briefly introduced the original Resonant Recognition Model(RRM),and then mod-ified it by using the wavelet transform to acquire the Modified Resonant Recognition Model(MRRM).The key characteris-tic of the new model is that it can predict directly the protein-protein interaction from the primary sequence,and the MRRM is more suitable than the RRM for this prediction.The results of numerical experiments show that the MRRM is effective for predicting the protein-protein interaction. 展开更多
关键词 protein-protein interaction resonant recognition model modified resonant recognition model discrete wavelet transform characteristics frequency
原文传递
Spatiotemporal emotion recognition based on 3D time-frequency domain feature matrix
18
作者 Chao Hao Lian Weifang Liu Yongli 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期62-72,共11页
The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals... The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively. 展开更多
关键词 spatiotemporal emotion recognition model 3-dimensinal(3D)feature matrix time-frequency features multivariate convolutional neural network(MVCNN) long short-term memory(LSTM)
原文传递
An auditory periphery model for improving narrow-band noise recognition rate of underwater targets
19
作者 LIN Zhengqing QIU Mengran BA Wei 《Chinese Journal of Acoustics》 CSCD 2018年第3期325-340,共16页
The recognition rate of the auditory periphery features decreases when the model is used to identify underwater targets in practice. To solve this problem, an improved method based on Gammatone filter bank is proposed... The recognition rate of the auditory periphery features decreases when the model is used to identify underwater targets in practice. To solve this problem, an improved method based on Gammatone filter bank is proposed. Firstly, after the reason of the decreasing of the recognition results is analyzed, the mechanism of multichannel data acquisition in acoustic engineering may narrow down signal frequency range, which leads to time-frequency features distortion. Secondly, the Gammatone filter bank is implemented to simulate frequency decom- position characteristics of human ear basilar membrane. Since the class information of the underwater noise signal is mostly contained in low frequency range, the auditory features of the conventional model are interpolated and the channel number of the filter bank and the central frequency of each frequency band are adjusted accordingly to obtain a 27-dimensional feature vector of the narrow-band target signal. The adjusted model may reflect the target's time- frequency feature more precisely. Finally, the performance of the auditory features is tested by a Neural Network classifier. The experiment results show that the modified auditory model is more effective than the conventional ones. The major information contained in broadband signals is reserved and the classification ability for real targets is further enhanced. The recog- nition results are increased from 82.59% to 88.80%. The modified auditory features effectively improve the recognition rate for underwater target radiated noise signals. 展开更多
关键词 An auditory periphery model for improving narrow-band noise recognition rate of underwater targets
原文传递
A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing 被引量:13
20
作者 David Ireri Eisa Belal +2 位作者 Cedric Okinda Nelson Makange Changying Ji 《Artificial Intelligence in Agriculture》 2019年第2期28-37,共10页
With large-scale production and the need for high-quality tomatoes to meet consumer and market standards criteria,have led to the need for an inline,accurate,reliable grading system during the post-harvest process.Thi... With large-scale production and the need for high-quality tomatoes to meet consumer and market standards criteria,have led to the need for an inline,accurate,reliable grading system during the post-harvest process.This study introduced a tomato grading machine vision system based on RGB images.The proposed system performed calyx and stalk scar detection at an average accuracy of 0.9515 for both defected and healthy tomatoes by histogramthresholding based on themean g-r value of these regions of interest.Defected regionswere detected by an RBF-SVMclassifier using the LAB color-space pixel values.Themodel achieved an overall accuracy of 0.989 upon validation.Four grading categories recognitionmodelswere developed based on color and texture features.The RBF-SVMoutperformed all the explored modelswith the highest accuracy of 0.9709 for healthy and defected category.However,the grading accuracy decreased as the number of grading categories increased.A combination of color and texture features achieved the highest accuracy in all the grading categories in image features evaluation.This proposed system can be used as an inline tomato sorting tool to ensure that quality standards are adhered to and maintained. 展开更多
关键词 GRADING CALYX Defected recognition models Machine vision
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部