Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn...Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.展开更多
Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seaml...Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.展开更多
Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa...Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.展开更多
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being...Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.展开更多
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c...The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint r...Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.展开更多
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa...Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively.展开更多
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s...The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.展开更多
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s...Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Ne...This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.展开更多
Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals...Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals.This could be a critical problem in the broadband maritime wireless communications,where various propagation paths with large differences in the time of arrival are very likely to exist.Specifically,multiple paths may stem from the direct path,the reflection paths from the rough sea surface,and the refraction paths from the atmospheric duct,respectively.To address this issue,we propose a novel blind equalization-aided deep learning(DL)approach to recognize QAM signals in the presence of multipath propagation.The proposed approach consists of two modules:A blind equalization module and a subsequent DL network which employs the structure of ResNet.With predefined searching step-sizes for the blind equalization algorithm,which are designed according to the set of modulation formats of interest,the DL network is trained and tested over various multipath channel parameter settings.It is shown that as compared to the conventional DL approaches without equalization,the proposed method can achieve an improvement in the recognition accuracy up to 30%in severe multipath scenarios,especially in the high SNR regime.Moreover,it efficiently reduces the number of training data that is required.展开更多
The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of...The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of the popular research areas i.e.,Vehicle License Plate Recognition(VLPR)aims at determining the characters that exist in the license plate of the vehicles.The VLPR process is a difficult one due to the differences in viewpoint,shapes,colors,patterns,and non-uniform illumination at the time of capturing images.The current study develops a robust Deep Learning(DL)-based VLPR model using Squirrel Search Algorithm(SSA)-based Convolutional Neural Network(CNN),called the SSA-CNN model.The presented technique has a total of four major processes namely preprocessing,License Plate(LP)localization and detection,character segmentation,and recognition.Hough Transform(HT)is applied as a feature extractor and SSA-CNN algorithm is applied for character recognition in LP.The SSA-CNN method effectively recognizes the characters that exist in the segmented image by optimal tuning of CNN parameters.The HT-SSA-CNN model was experimentally validated using the Stanford Car,FZU Car,and HumAIn 2019 Challenge datasets.The experimentation outcome verified that the presented method was better under several aspects.The projected HT-SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%.展开更多
Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intellig...Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intelligence,many security analysts rely on cumbersome and time-consuming manual efforts.Cybersecurity knowledge graph plays a significant role in automatics analysis of cyber threat intelligence.As the foundation for constructing cybersecurity knowledge graph,named entity recognition(NER)is required for identifying critical threat-related elements from textual cyber threat intelligence.Recently,deep neural network-based models have attained very good results in NER.However,the performance of these models relies heavily on the amount of labeled data.Since labeled data in cybersecurity is scarce,in this paper,we propose an adversarial active learning framework to effectively select the informative samples for further annotation.In addition,leveraging the long short-term memory(LSTM)network and the bidirectional LSTM(BiLSTM)network,we propose a novel NER model by introducing a dynamic attention mechanism into the BiLSTM-LSTM encoderdecoder.With the selected informative samples annotated,the proposed NER model is retrained.As a result,the performance of the NER model is incrementally enhanced with low labeling cost.Experimental results show the effectiveness of the proposed method.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cos...We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing.展开更多
Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vis...Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution.展开更多
The two-stream convolutional neural network exhibits excellent performance in the video action recognition.The crux of the matter is to use the frames already clipped by the videos and the optical flow images pre-extr...The two-stream convolutional neural network exhibits excellent performance in the video action recognition.The crux of the matter is to use the frames already clipped by the videos and the optical flow images pre-extracted by the frames,to train a model each,and to finally integrate the outputs of the two models.Nevertheless,the reliance on the pre-extraction of the optical flow impedes the efficiency of action recognition,and the temporal and the spatial streams are just simply fused at the ends,with one stream failing and the other stream succeeding.We propose a novel hidden two-stream collaborative(HTSC)learning network that masks the steps of extracting the optical flow in the network and greatly speeds up the action recognition.Based on the two-stream method,the two-stream collaborative learning model captures the interaction of the temporal and spatial features to greatly enhance the accuracy of recognition.Our proposed method is highly capable of achieving the balance of efficiency and precision on large-scale video action recognition datasets.展开更多
文摘Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.
基金funded by Researchers Supporting Project Number(RSPD2024 R947),King Saud University,Riyadh,Saudi Arabia.
文摘Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.
基金supported from the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.
文摘Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.
基金supported by the“Human Resources Program in Energy Technol-ogy”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and Granted Financial Resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported in part by the National Science Foundation of China under Grants U22B2027,62172297,62102262,61902276 and 62272311,Tianjin Intelligent Manufacturing Special Fund Project under Grant 20211097the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)under Grant AD23026096(Application Number 2022AC20001)+1 种基金Hainan Provincial Natural Science Foundation of China under Grant 622RC616CCF-Nsfocus Kunpeng Fund Project under Grant CCF-NSFOCUS202207.
文摘Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR39.
文摘Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively.
基金the National Key Research and Development Program of China(No.2020YFB1713500)the Natural Science Basic Research Program of Shaanxi(Grant No.2023JCYB289)+1 种基金the National Natural Science Foundation of China(Grant No.52175112)the Fundamental Research Funds for the Central Universities(Grant No.ZYTS23102).
文摘The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.
基金National Natural Science Foundation of China(82274411)Science and Technology Innovation Program of Hunan Province(2022RC1021)Leading Research Project of Hunan University of Chinese Medicine(2022XJJB002).
文摘Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
文摘This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.
基金the National Natural Science Foundation of China under Grant 61771264,61801114,61501264,61771286the Nantong University-Nantong Joint Research Center for Intelligent Information Technology under Grant No.KFKT2017B01,KFKT2017A04the Natural Science Foundation of Jiangsu Province under Grant BK20170688.
文摘Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals.This could be a critical problem in the broadband maritime wireless communications,where various propagation paths with large differences in the time of arrival are very likely to exist.Specifically,multiple paths may stem from the direct path,the reflection paths from the rough sea surface,and the refraction paths from the atmospheric duct,respectively.To address this issue,we propose a novel blind equalization-aided deep learning(DL)approach to recognize QAM signals in the presence of multipath propagation.The proposed approach consists of two modules:A blind equalization module and a subsequent DL network which employs the structure of ResNet.With predefined searching step-sizes for the blind equalization algorithm,which are designed according to the set of modulation formats of interest,the DL network is trained and tested over various multipath channel parameter settings.It is shown that as compared to the conventional DL approaches without equalization,the proposed method can achieve an improvement in the recognition accuracy up to 30%in severe multipath scenarios,especially in the high SNR regime.Moreover,it efficiently reduces the number of training data that is required.
文摘The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of the popular research areas i.e.,Vehicle License Plate Recognition(VLPR)aims at determining the characters that exist in the license plate of the vehicles.The VLPR process is a difficult one due to the differences in viewpoint,shapes,colors,patterns,and non-uniform illumination at the time of capturing images.The current study develops a robust Deep Learning(DL)-based VLPR model using Squirrel Search Algorithm(SSA)-based Convolutional Neural Network(CNN),called the SSA-CNN model.The presented technique has a total of four major processes namely preprocessing,License Plate(LP)localization and detection,character segmentation,and recognition.Hough Transform(HT)is applied as a feature extractor and SSA-CNN algorithm is applied for character recognition in LP.The SSA-CNN method effectively recognizes the characters that exist in the segmented image by optimal tuning of CNN parameters.The HT-SSA-CNN model was experimentally validated using the Stanford Car,FZU Car,and HumAIn 2019 Challenge datasets.The experimentation outcome verified that the presented method was better under several aspects.The projected HT-SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%.
基金the National Natural Science Foundation of China undergrant 61501515.
文摘Owing to the continuous barrage of cyber threats,there is a massive amount of cyber threat intelligence.However,a great deal of cyber threat intelligence come from textual sources.For analysis of cyber threat intelligence,many security analysts rely on cumbersome and time-consuming manual efforts.Cybersecurity knowledge graph plays a significant role in automatics analysis of cyber threat intelligence.As the foundation for constructing cybersecurity knowledge graph,named entity recognition(NER)is required for identifying critical threat-related elements from textual cyber threat intelligence.Recently,deep neural network-based models have attained very good results in NER.However,the performance of these models relies heavily on the amount of labeled data.Since labeled data in cybersecurity is scarce,in this paper,we propose an adversarial active learning framework to effectively select the informative samples for further annotation.In addition,leveraging the long short-term memory(LSTM)network and the bidirectional LSTM(BiLSTM)network,we propose a novel NER model by introducing a dynamic attention mechanism into the BiLSTM-LSTM encoderdecoder.With the selected informative samples annotated,the proposed NER model is retrained.As a result,the performance of the NER model is incrementally enhanced with low labeling cost.Experimental results show the effectiveness of the proposed method.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
基金the National Natural Science Foundation of China(Grant Nos.61871234 and 11847062).
文摘We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution.
基金This work was supported by the Scientific Research Fund of Hunan Provincial Education Department of China(Project No.17A007)the Teaching Reform and Research Project of Hunan Province of China(Project No.JG1615).
文摘The two-stream convolutional neural network exhibits excellent performance in the video action recognition.The crux of the matter is to use the frames already clipped by the videos and the optical flow images pre-extracted by the frames,to train a model each,and to finally integrate the outputs of the two models.Nevertheless,the reliance on the pre-extraction of the optical flow impedes the efficiency of action recognition,and the temporal and the spatial streams are just simply fused at the ends,with one stream failing and the other stream succeeding.We propose a novel hidden two-stream collaborative(HTSC)learning network that masks the steps of extracting the optical flow in the network and greatly speeds up the action recognition.Based on the two-stream method,the two-stream collaborative learning model captures the interaction of the temporal and spatial features to greatly enhance the accuracy of recognition.Our proposed method is highly capable of achieving the balance of efficiency and precision on large-scale video action recognition datasets.