One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a conc...One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a concept of rarefaction wave gun(RAVEN)was proposed to significantly reduce the weapon recoil and the heat in barrel,while minimally reducing the muzzle velocity.The main principle of RAVEN is that the rarefaction wave will not reach the projectile base until the muzzle by delaying the venting time of an expansion nozzle at the breech.Developed on the RAVEN principle,the purpose of this paper is to provide an engineering method for predicting the performance of a low-recoil gun with front nozzle.First,a two-dimensional two-phase flow model of interior ballistic during the RAVEN firing cycle was established.Numerical simulation results were compared with the published data to validate the reliability and accuracy.Next,the effects of the vent opening times and locations were investigated to determine the influence rules on the performance of the RAVEN with front nozzle.Then according to the results above,simple nonlinear fitting formulas were provided to explain how the muzzle velocity and the recoil force change with the vent opening time and location.Finally,a better vent venting opening time corresponding to the vent location was proposed.The findings should make an important contribution to the field of engineering applications of the RAVEN.展开更多
A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculatio...A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for ^235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.展开更多
Leader propagation is a fundamental issue in lightning physics. The propagation characteristics of positive leaders and negative leaders are summarized and compared based on data from high-speed camera and electromagn...Leader propagation is a fundamental issue in lightning physics. The propagation characteristics of positive leaders and negative leaders are summarized and compared based on data from high-speed camera and electromagnetic field in rocket-triggered lightning and tower-initiated lightning discharges; available channel base current data recorded in rocket-triggered lightning are also used. The negative leaders propagate in a stepped fashion accompanied by many branches. The stems ahead of the negative leader tip determine the manner and direction of the leader propagation, and even the branching and winding of the lightning channel. The impulsive current, electromagnetic field, and related optical images suggest that the positive leader may develop in a step-like fashion at its initial stage of triggered lightning. However, the stepping processes of the positive leader are obviously different from those of the negative leader. Tower-initiated lightning revealed that the most conspicuous characteristics of the stepwise positive leader involve the intermittent brush-like corona zone in front of the leader tip and the luminosity enhancement of the channel behind the tip. In rockettriggered lightning flashes, the charge transferred during an individual step for the negative leader was nearly an order greater than for the positive counterpart. The successive streamers ahead of the leader tip are essential for both negative and positive leader propagation, and the stems could be formed from one or more streamers in the previous negative streamer zone with the main leader channel dim. High-resolution observation of tower lightning also revealed a new type of bidirectional recoil leader, with polarity contrary to the traditional one, traversing in negative channels associated with tower-initiated and rocket-triggered lightning.展开更多
The recoil response of a deep-water drilling riser following an ED(Emergency Disconnection)scenario is a transient and sensitive process.The recoiling displacement of the riser is the resultant of recoil motion and ax...The recoil response of a deep-water drilling riser following an ED(Emergency Disconnection)scenario is a transient and sensitive process.The recoiling displacement of the riser is the resultant of recoil motion and axial stretch.How-ever,it is typically represented by one variable in recoil simulations.As axial deformation is quite small compared with axial motion in the recoil process,it inevitably introduces numerical errors(i.e.,a large number annihilating a small number).Thus,it is hard to perform a quantitative analysis of axial deformation,although a consensus initial deformation is essential for recoil dynamics.Moreover,the triggered axial natural modes have never been examined before.In this study,the recoil response is decomposed into two parts:recoil motion and axial deformation,and a novel model is developed by Galerkin method.It has demonstrated that the initial stretch has a significant effect at the initial stage in recoil.The existing models underestimate the effects of axial deformation.The new model can capture information of triggered natural modes and figure out the modes undergoing dynamic compression.This study can be beneficial to overpull setting,determination of ED time and anti-recoil control optimization.展开更多
Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly...Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.展开更多
We have employed recoil-induced resonance(RIR) with linewidth on the order of 10 k Hz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees w...We have employed recoil-induced resonance(RIR) with linewidth on the order of 10 k Hz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T = 84 ± 4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics.展开更多
Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the a...Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.展开更多
Elastic recoil detection (ERD) proposed for the analysis of light elements in a heavier matrix is an appropriate method for its specialities. Optimization of experimental parameters in ERD such as scattering geometry ...Elastic recoil detection (ERD) proposed for the analysis of light elements in a heavier matrix is an appropriate method for its specialities. Optimization of experimental parameters in ERD such as scattering geometry and incident beam energy is very important when using a small accelerator with energy lower than 10 MeV. In this paper a computer program ERDAl is developed for the purpose, and is proved to be useful for practical handling of ERD experiments.展开更多
In this paper, an elastic recoil detection analysis method is described using 35 MeV <sup>35</sup>Cl as incident ions. This method can determine and profile simultaneously H, D, He, C and O or in the other...In this paper, an elastic recoil detection analysis method is described using 35 MeV <sup>35</sup>Cl as incident ions. This method can determine and profile simultaneously H, D, He, C and O or in the other case, H, C, N and O. The depth resolution for the elements heavier than He is better than 20 nm. It has been applied to study the Co/Si and TiN thin films, and the depth profiles of He implanted in monocrystal silicon.展开更多
A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter...A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter, moreover, typical phenomena of MIG welding, such as filler droplets impinging weld pool, electromagnetic force in the weld pool, and typical phenomena of laser beam welding, such as recoil pressure, Inverse Bremsstrahlung absorption, Fresnel absorption were all considered in the model. The laser beam and arc couple effect were introduced into this model by the plasma width during hybrid welding. The role of recoil pressure in the weld formation was discussed. Transient weld pool shape and complicated liquid metal velocity distribution from two kinds weld pool to an unified weld pool were calculated. The simulated weld bead geometry with consideration recoil pressure was in good agreement with experimental measurement.展开更多
The inlet deflector rollers of a recoiling line are sprayed rollers. Short scratch lines have been found on the surface of steel sheets during commissioning. By adjusting the control parameters of the line and investi...The inlet deflector rollers of a recoiling line are sprayed rollers. Short scratch lines have been found on the surface of steel sheets during commissioning. By adjusting the control parameters of the line and investigating the manufacturing process of inlet deflector rollers, the root cause of the scratches was found. By modifying the manufacturing process of the rollers, the scratches have been thoroughly eliminated, and quality steel sheets have been consistently produced in the recoiling line.展开更多
A part of a long DNA chain was driven into a confined environment by an electric field, while the rest remains in the higher-entropy region. Upon removal of the field, the chain recoils to the higher-entropy region sp...A part of a long DNA chain was driven into a confined environment by an electric field, while the rest remains in the higher-entropy region. Upon removal of the field, the chain recoils to the higher-entropy region spontaneously. This dynamical process was investigated by Monte Carlo simulations. The simulation reproduces the experimentally-observed phenomenon that the recoil of the DNA chain is initially slow and gradually increases in speed due to the presence of the confinement-entropic force. The results show that with increasing the dimension or decreasing the spacing of the nanopillars the recoil velocity of the DNA chain will increase. Further analysis suggests that the characteristic entropy per monomer in the confinement is proportional to the area fraction of the free part in the confinement.展开更多
We report on observing photon recoil effects in the absorption of a single monochromatic light at 689 nm through an ultracold ^(88)Sr gas,where the recoil frequency is comparable to natural linewidth of the narrow-lin...We report on observing photon recoil effects in the absorption of a single monochromatic light at 689 nm through an ultracold ^(88)Sr gas,where the recoil frequency is comparable to natural linewidth of the narrow-line transition 5s^(2) ^(1)S_(0)-5s5p ^(3)P_(1) in strontium.In the regime of high-saturation,the absorption profile becomes asymmetric due to the photon-recoil shift,which is of the same order as the natural linewidth.The lineshape is described by an extension of the optical Bloch equations including the momentum transfers to atoms during emission and absorption of photons.Our work reveals the photon recoil effects in a simplest single-beam absorption setting,which is of significant relevance to other applications such as saturation spectroscopy,Ramsey interferometry,and absorption imaging.展开更多
The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the respon...The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the response functions and detection efficiency of three SPs developed at CAEP are simulated by Geant4.The simulated spectra are compared with pulse-height spectra measured at 0.165,0.575,1.4,and 14.1 MeV of incident neutrons.And the calculated detector efficiencies agree within 5%with the data obtained by neutron activation.展开更多
By using the ATV module of MSC. ADAMS, the dynamic simulation of recoil response of tank gun is analyzed.How the recoil force affects the bodywork and the suspension during gun firing, as well as the changing status o...By using the ATV module of MSC. ADAMS, the dynamic simulation of recoil response of tank gun is analyzed.How the recoil force affects the bodywork and the suspension during gun firing, as well as the changing status of the gun muzzle's velocity are gained. All results and analyzing methods are offered for the designing basis of optimizing tank vehicle-gun match. The constructive exploration is beneficial to improving the general capability of tank.展开更多
On the basis of recoil in the process of blasting demolition of high buildings, this thesis applies dynamics theory to predict whether the phenomena of recoil will occur or not by simulation and calculation of the rec...On the basis of recoil in the process of blasting demolition of high buildings, this thesis applies dynamics theory to predict whether the phenomena of recoil will occur or not by simulation and calculation of the recoil and the pressure suffered from the rudimental supporter in the process of demolition. The criterion of recoil relies on whether recoil can be overcome by the intensity of reservation or friction. To take the obliquity as increment, and to calculate the recoil and the pressure suffered from the rudimental supporter in correspondence with the every obliquity in the demolition by VC program, the relation curve can be obtained between recoil and obliquity. By means of examples testified with programs, the obtained results are consistent with those of practice.展开更多
The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study...The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study,for the first time,we measure solar pp neutrinos in the electron recoil energy range from 24 to 144 keV using the PandaX-4T commissioning data with 0.63 tonne×year exposure.The pp neutrino flux is determined as(8.0±3.9(stat)±10.0(syst))×1010 s^(-1)cm^(-2),which is consistent with the Standard Solar Model and existing measurements,corresponding to an upper flux limit of 23.3×10^(10)s^(-1)cm^(-2)at 90%C.L..展开更多
We present a systematic determination of the responses of PandaX-Ⅱ,a dual phase xenon time projection chamber detector,to low energy recoils.The electron recoil(ER) and nuclear recoil(NR) responses are calibrated,res...We present a systematic determination of the responses of PandaX-Ⅱ,a dual phase xenon time projection chamber detector,to low energy recoils.The electron recoil(ER) and nuclear recoil(NR) responses are calibrated,respectively,with injected tritiated methane or 220Rn source,and with 241Am-Be neutron source,in an energy range from 1-25 keV(ER) and 4-80 keV(NR),under the two drift fields,400 and 317 V/cm.An empirical model is used to fit the light yield and charge yield for both types of recoils.The best fit models can describe the calibration data significantly.The systematic uncertainties of the fitted models are obtained via statistical comparison to the data.展开更多
A magnetic proton recoil (MPR) spectrometer is a novel instrument with superior performance, including high energy resolution, high count rate and good signal-to-noise ratio (SNR) for measurements of neutron spect...A magnetic proton recoil (MPR) spectrometer is a novel instrument with superior performance, including high energy resolution, high count rate and good signal-to-noise ratio (SNR) for measurements of neutron spectra from inertial confinement fusion (ICF) experiments and high power Tokomaks. In this work, the design of a compact MPR spectrometer (cMPR) was evaluated for deuteron-tritium (DT) neutron spectroscopy. The characteristics of the spectrometer were analyzed using 2-D beam transport simulations, 3-D particle transport calculations and Monte-Carlo simulations. Based on the theoretical results, an instrument design that satisfies special experimental requirements is proposed. The energy resolution and efficiency of the spectrometer are also evaluated. The results indicate that the proposed cMPR spectrometer would achieve a detection efficiency and energy resolution of approximately 10?8 and 4%, respectively, for DT neutrons.展开更多
To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium sp...To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501 A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4–3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11502114)the Fundamental Research Funds for the Central Universities(Grant No.30918011323)
文摘One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a concept of rarefaction wave gun(RAVEN)was proposed to significantly reduce the weapon recoil and the heat in barrel,while minimally reducing the muzzle velocity.The main principle of RAVEN is that the rarefaction wave will not reach the projectile base until the muzzle by delaying the venting time of an expansion nozzle at the breech.Developed on the RAVEN principle,the purpose of this paper is to provide an engineering method for predicting the performance of a low-recoil gun with front nozzle.First,a two-dimensional two-phase flow model of interior ballistic during the RAVEN firing cycle was established.Numerical simulation results were compared with the published data to validate the reliability and accuracy.Next,the effects of the vent opening times and locations were investigated to determine the influence rules on the performance of the RAVEN with front nozzle.Then according to the results above,simple nonlinear fitting formulas were provided to explain how the muzzle velocity and the recoil force change with the vent opening time and location.Finally,a better vent venting opening time corresponding to the vent location was proposed.The findings should make an important contribution to the field of engineering applications of the RAVEN.
基金supported by the National Natural Science Foundation of China(No.11775196)the Chinese Special Project for ITER(No.2015GB108006)
文摘A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for ^235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41630425, 41761144074)
文摘Leader propagation is a fundamental issue in lightning physics. The propagation characteristics of positive leaders and negative leaders are summarized and compared based on data from high-speed camera and electromagnetic field in rocket-triggered lightning and tower-initiated lightning discharges; available channel base current data recorded in rocket-triggered lightning are also used. The negative leaders propagate in a stepped fashion accompanied by many branches. The stems ahead of the negative leader tip determine the manner and direction of the leader propagation, and even the branching and winding of the lightning channel. The impulsive current, electromagnetic field, and related optical images suggest that the positive leader may develop in a step-like fashion at its initial stage of triggered lightning. However, the stepping processes of the positive leader are obviously different from those of the negative leader. Tower-initiated lightning revealed that the most conspicuous characteristics of the stepwise positive leader involve the intermittent brush-like corona zone in front of the leader tip and the luminosity enhancement of the channel behind the tip. In rockettriggered lightning flashes, the charge transferred during an individual step for the negative leader was nearly an order greater than for the positive counterpart. The successive streamers ahead of the leader tip are essential for both negative and positive leader propagation, and the stems could be formed from one or more streamers in the previous negative streamer zone with the main leader channel dim. High-resolution observation of tower lightning also revealed a new type of bidirectional recoil leader, with polarity contrary to the traditional one, traversing in negative channels associated with tower-initiated and rocket-triggered lightning.
基金supported by the National Natural Science Foundation of China(Grant No.51879161).
文摘The recoil response of a deep-water drilling riser following an ED(Emergency Disconnection)scenario is a transient and sensitive process.The recoiling displacement of the riser is the resultant of recoil motion and axial stretch.How-ever,it is typically represented by one variable in recoil simulations.As axial deformation is quite small compared with axial motion in the recoil process,it inevitably introduces numerical errors(i.e.,a large number annihilating a small number).Thus,it is hard to perform a quantitative analysis of axial deformation,although a consensus initial deformation is essential for recoil dynamics.Moreover,the triggered axial natural modes have never been examined before.In this study,the recoil response is decomposed into two parts:recoil motion and axial deformation,and a novel model is developed by Galerkin method.It has demonstrated that the initial stretch has a significant effect at the initial stage in recoil.The existing models underestimate the effects of axial deformation.The new model can capture information of triggered natural modes and figure out the modes undergoing dynamic compression.This study can be beneficial to overpull setting,determination of ED time and anti-recoil control optimization.
基金supported by the National Natural Science Foundation of China(Grant No.52102436)the Fundamental Research Funds for the Central Universities(Grant No.30920021109)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200496)China Postdoctoral Science Foundation(Grant No.2020M681615)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202107)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(Grant No.MCMS-E-0221Y01)。
文摘Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.
基金Project supported by the National Basic Research Development Program of China(Grant No.2012CB921603)the National High Technology Research and Development Program of China(Grant No.2011AA010801)+1 种基金the National Natural Science Foundation of China(Grant Nos.61275209,11304189,61378015,and 11434007)Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13076)
文摘We have employed recoil-induced resonance(RIR) with linewidth on the order of 10 k Hz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T = 84 ± 4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics.
文摘Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.
文摘Elastic recoil detection (ERD) proposed for the analysis of light elements in a heavier matrix is an appropriate method for its specialities. Optimization of experimental parameters in ERD such as scattering geometry and incident beam energy is very important when using a small accelerator with energy lower than 10 MeV. In this paper a computer program ERDAl is developed for the purpose, and is proved to be useful for practical handling of ERD experiments.
文摘In this paper, an elastic recoil detection analysis method is described using 35 MeV <sup>35</sup>Cl as incident ions. This method can determine and profile simultaneously H, D, He, C and O or in the other case, H, C, N and O. The depth resolution for the elements heavier than He is better than 20 nm. It has been applied to study the Co/Si and TiN thin films, and the depth profiles of He implanted in monocrystal silicon.
文摘A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter, moreover, typical phenomena of MIG welding, such as filler droplets impinging weld pool, electromagnetic force in the weld pool, and typical phenomena of laser beam welding, such as recoil pressure, Inverse Bremsstrahlung absorption, Fresnel absorption were all considered in the model. The laser beam and arc couple effect were introduced into this model by the plasma width during hybrid welding. The role of recoil pressure in the weld formation was discussed. Transient weld pool shape and complicated liquid metal velocity distribution from two kinds weld pool to an unified weld pool were calculated. The simulated weld bead geometry with consideration recoil pressure was in good agreement with experimental measurement.
文摘The inlet deflector rollers of a recoiling line are sprayed rollers. Short scratch lines have been found on the surface of steel sheets during commissioning. By adjusting the control parameters of the line and investigating the manufacturing process of inlet deflector rollers, the root cause of the scratches was found. By modifying the manufacturing process of the rollers, the scratches have been thoroughly eliminated, and quality steel sheets have been consistently produced in the recoiling line.
文摘A part of a long DNA chain was driven into a confined environment by an electric field, while the rest remains in the higher-entropy region. Upon removal of the field, the chain recoils to the higher-entropy region spontaneously. This dynamical process was investigated by Monte Carlo simulations. The simulation reproduces the experimentally-observed phenomenon that the recoil of the DNA chain is initially slow and gradually increases in speed due to the presence of the confinement-entropic force. The results show that with increasing the dimension or decreasing the spacing of the nanopillars the recoil velocity of the DNA chain will increase. Further analysis suggests that the characteristic entropy per monomer in the confinement is proportional to the area fraction of the free part in the confinement.
基金supported by the Anhui Initiative in Quantum Information Technologiessupport from the National Natural Science Foundation of China (Grant No. 11827806)
文摘We report on observing photon recoil effects in the absorption of a single monochromatic light at 689 nm through an ultracold ^(88)Sr gas,where the recoil frequency is comparable to natural linewidth of the narrow-line transition 5s^(2) ^(1)S_(0)-5s5p ^(3)P_(1) in strontium.In the regime of high-saturation,the absorption profile becomes asymmetric due to the photon-recoil shift,which is of the same order as the natural linewidth.The lineshape is described by an extension of the optical Bloch equations including the momentum transfers to atoms during emission and absorption of photons.Our work reveals the photon recoil effects in a simplest single-beam absorption setting,which is of significant relevance to other applications such as saturation spectroscopy,Ramsey interferometry,and absorption imaging.
文摘The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the response functions and detection efficiency of three SPs developed at CAEP are simulated by Geant4.The simulated spectra are compared with pulse-height spectra measured at 0.165,0.575,1.4,and 14.1 MeV of incident neutrons.And the calculated detector efficiencies agree within 5%with the data obtained by neutron activation.
文摘By using the ATV module of MSC. ADAMS, the dynamic simulation of recoil response of tank gun is analyzed.How the recoil force affects the bodywork and the suspension during gun firing, as well as the changing status of the gun muzzle's velocity are gained. All results and analyzing methods are offered for the designing basis of optimizing tank vehicle-gun match. The constructive exploration is beneficial to improving the general capability of tank.
文摘On the basis of recoil in the process of blasting demolition of high buildings, this thesis applies dynamics theory to predict whether the phenomena of recoil will occur or not by simulation and calculation of the recoil and the pressure suffered from the rudimental supporter in the process of demolition. The criterion of recoil relies on whether recoil can be overcome by the intensity of reservation or friction. To take the obliquity as increment, and to calculate the recoil and the pressure suffered from the rudimental supporter in correspondence with the every obliquity in the demolition by VC program, the relation curve can be obtained between recoil and obliquity. By means of examples testified with programs, the obtained results are consistent with those of practice.
基金supported in part by the grants from the National Science Foundation of China(12090060,12090063,12105052,12005131,11905128,11925502)the Office of Science and Technology,Shanghai Municipal Government(22JC1410100)+6 种基金the National Science Foundation of Sichuan ProvinceChina(2024NSFSC1371)the support from the Double First Class Plan of Shanghai Jiao Tong Universitythe sponsorship from the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)Hongwen Foundation in Hong KongTencentNew Cornerstone Science Foundation in China。
文摘The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study,for the first time,we measure solar pp neutrinos in the electron recoil energy range from 24 to 144 keV using the PandaX-4T commissioning data with 0.63 tonne×year exposure.The pp neutrino flux is determined as(8.0±3.9(stat)±10.0(syst))×1010 s^(-1)cm^(-2),which is consistent with the Standard Solar Model and existing measurements,corresponding to an upper flux limit of 23.3×10^(10)s^(-1)cm^(-2)at 90%C.L..
基金Supported by a grant from the Ministry of Science and Technology of China(2016YFA0400301)National Science Foundation of China(12090060,11525522,11775141,11755001)Office of Science and Technology,Shanghai Municipal Government(18JC1410200)。
文摘We present a systematic determination of the responses of PandaX-Ⅱ,a dual phase xenon time projection chamber detector,to low energy recoils.The electron recoil(ER) and nuclear recoil(NR) responses are calibrated,respectively,with injected tritiated methane or 220Rn source,and with 241Am-Be neutron source,in an energy range from 1-25 keV(ER) and 4-80 keV(NR),under the two drift fields,400 and 317 V/cm.An empirical model is used to fit the light yield and charge yield for both types of recoils.The best fit models can describe the calibration data significantly.The systematic uncertainties of the fitted models are obtained via statistical comparison to the data.
基金Supported by Science and Technology Development Foundation of China Academy of Engineering Physics (2008B0103003)
文摘A magnetic proton recoil (MPR) spectrometer is a novel instrument with superior performance, including high energy resolution, high count rate and good signal-to-noise ratio (SNR) for measurements of neutron spectra from inertial confinement fusion (ICF) experiments and high power Tokomaks. In this work, the design of a compact MPR spectrometer (cMPR) was evaluated for deuteron-tritium (DT) neutron spectroscopy. The characteristics of the spectrometer were analyzed using 2-D beam transport simulations, 3-D particle transport calculations and Monte-Carlo simulations. Based on the theoretical results, an instrument design that satisfies special experimental requirements is proposed. The energy resolution and efficiency of the spectrometer are also evaluated. The results indicate that the proposed cMPR spectrometer would achieve a detection efficiency and energy resolution of approximately 10?8 and 4%, respectively, for DT neutrons.
基金Supported by the National Natural Science Foundation of China(91226104) National Special Magnetic Confinement Fusion Energy Research,China(2015GB108001)
文摘To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501 A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4–3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.