Recombinant inbred lines(RILs) serve as powerful tools for genetic mapping.RILs are obtained by crossing two inbred lines followed by repeated selfing or sib-mating to create a set of new
Development of the recombinant inbred line populations (RILs) is important basis to detect QTLs for cold tolerance at booting stage in rice. A set of 230 RILs derived from the cross of Towada and Kunmingxiaobaigu we...Development of the recombinant inbred line populations (RILs) is important basis to detect QTLs for cold tolerance at booting stage in rice. A set of 230 RILs derived from the cross of Towada and Kunmingxiaobaigu were used for evaluation of low-temperature response on major agronomic traits of plant height (PH), panicle length (PL), panicle exsertion (PE), spikelet fertility (SF), specific spikelet fertility (SSF), and spikelets per panicle (SPP) under natural low-temperature growing environments in Yunnan Province, China. The results showed PH, PE, and SPP were mainly attributed by genotypes. PL was mainly influenced interactively by the genotypes × environments. SF and SSF were mainly controlled by the environments. Under the five different growth environments, F values of the six agronomic traits mentioned above ranged from 4.019 to 97.284. Significant difference was revealed between the lines. Under every environment, it indicated significantly positive correlation between SF and SSF, with correlation coefficients ranged from 0.826 to 0.885. It indicated significantly positive correlation between PH, PL, and PE. Under five different growing environments, variation coefficients of the six characters ordered in SSF (66.3%) 〉 PE (57.4%) 〉 SP (37.2%) 〉 SPP (16.2%) 〉 PH (9.6%) 〉 PL (6.4%). SSF, PE and SF were most sensitive to low temperature stress at booting stage, while SPP, PH and PL being least. The RILs of Towada/ Kunmingxiaobaigu can be used as a genetic population to investigate cold tolerance at booting stage. SSF, PE and SF are most sensitive to cold tolerance at booting stage in rice. So far the the variation of PH, PL, and SPP related to cold tolerance are not clear under natural low-temperature environment. More tested environments and years are required to identify and evaluate cold tolerance at booting stage in rice.展开更多
Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cul...Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.展开更多
Protein and starch are the most important traits in determining processing quality in wheat. In order to understand the genetic basis of the influence of Waxy protein (Wx) and high molecular weight gluten subunit (...Protein and starch are the most important traits in determining processing quality in wheat. In order to understand the genetic basis of the influence of Waxy protein (Wx) and high molecular weight gluten subunit (HMW-GS) on processing quality, 256 recombinant inbred lines (RILs) derived from the cross of waxy wheat Nuomai 1 and Gaocheng 8901 were used as mapping population. DArT (diversity arrays technology), SSR (simple sequence repeat), HMW-GS, and Wx markers were used to construct the molecular genetic linkage map. QTLs for mixing peak time (MPT), mixing peak value (MPV), mixing peak width (MPW), and mixing peak integral (MPI) of Mixograph parameters were evaluated in three different environments. The genetic map comprised 498 markers, including 479 DArT, 14 SSR, 2 HMW-GS, and 3 Wx protein markers, covering 4 229.7 cM with an average distance of 9.77 cM. These markers were identified on 21 chromosomes. Eighteen additive QTLs were detected in three different environments, which were distributed on chromosomes 1A, 1B, 1D, 4A, 6A, and 7D. QMPT-1D.1 and QMPT-1D.2 were close to the Glu-D1 marker accounting for 35.2, 22.22 and 36.57% of the phenotypic variance in three environments, respectively. QMPV-1D and QMPV-4A were detected in all environments, and QMPV-4A was the nearest to Wx-B1. One minor QTL, QMPI-1A, was detected under three environments with the genetic distances of 0.9 cM from the nearest marker Glu-A1, explaining from 5.31 to 6.67% of the phenotypic variance. Three pairs of epistatic QTLs were identified on chromosomes 2D and 4A. Therefore, this genetic map is very important and useful for quality trait related QTL mapping in wheat. In addition, the finding of several major QTLs, based on the genetic analyses, further suggested the importance of Glu-1 loci on dough mixing characteristics.展开更多
利用普通小麦品种藁城8901和PH85-16按单粒传方法构建的重组自交系群体F6(RIL-6)共112个家系,研究了影响小麦粉及面片色泽的主要因素。结果表明:硬度、吸水率、湿面筋、干面筋、蛋白质含量,与小麦粉白度、L*值及鲜面片0 h L*值呈负相关...利用普通小麦品种藁城8901和PH85-16按单粒传方法构建的重组自交系群体F6(RIL-6)共112个家系,研究了影响小麦粉及面片色泽的主要因素。结果表明:硬度、吸水率、湿面筋、干面筋、蛋白质含量,与小麦粉白度、L*值及鲜面片0 h L*值呈负相关,与小麦粉及鲜面片0 h的a*和b*值呈正相关;叶黄素和PPO活性,与小麦粉及鲜面片0 h L*值呈负相关,与b*值呈正相关;面筋指数和稳定时间,与小麦粉及面片的L*值呈正相关;淀粉糊化性状的几个参数,与小麦粉白度、L*值及鲜面片0 h L*值呈正相关,与小麦粉及鲜面片0 h的a*值呈负相关。由结果看出在小麦粉及面片色泽性状的选育过程中,对蛋白质和淀粉等组分含量进行选择的同时,也要注意内部特性的改良。选择面筋指数高、叶黄素和PPO活性低、淀粉糊化黏度高的株系,以满足人们对亮白色食品的需求。展开更多
文摘Recombinant inbred lines(RILs) serve as powerful tools for genetic mapping.RILs are obtained by crossing two inbred lines followed by repeated selfing or sib-mating to create a set of new
基金supported by the National Natural Science Foundation of China (30460065)the National 948 Key Program of Ministry of Agriculture of China (2006-G1)the National Key Technology R&D Program during the 11th Five-Year Plan period of China (2006BAD13B01)
文摘Development of the recombinant inbred line populations (RILs) is important basis to detect QTLs for cold tolerance at booting stage in rice. A set of 230 RILs derived from the cross of Towada and Kunmingxiaobaigu were used for evaluation of low-temperature response on major agronomic traits of plant height (PH), panicle length (PL), panicle exsertion (PE), spikelet fertility (SF), specific spikelet fertility (SSF), and spikelets per panicle (SPP) under natural low-temperature growing environments in Yunnan Province, China. The results showed PH, PE, and SPP were mainly attributed by genotypes. PL was mainly influenced interactively by the genotypes × environments. SF and SSF were mainly controlled by the environments. Under the five different growth environments, F values of the six agronomic traits mentioned above ranged from 4.019 to 97.284. Significant difference was revealed between the lines. Under every environment, it indicated significantly positive correlation between SF and SSF, with correlation coefficients ranged from 0.826 to 0.885. It indicated significantly positive correlation between PH, PL, and PE. Under five different growing environments, variation coefficients of the six characters ordered in SSF (66.3%) 〉 PE (57.4%) 〉 SP (37.2%) 〉 SPP (16.2%) 〉 PH (9.6%) 〉 PL (6.4%). SSF, PE and SF were most sensitive to low temperature stress at booting stage, while SPP, PH and PL being least. The RILs of Towada/ Kunmingxiaobaigu can be used as a genetic population to investigate cold tolerance at booting stage. SSF, PE and SF are most sensitive to cold tolerance at booting stage in rice. So far the the variation of PH, PL, and SPP related to cold tolerance are not clear under natural low-temperature environment. More tested environments and years are required to identify and evaluate cold tolerance at booting stage in rice.
基金funded by the National Key R&D Program of China(2017YFD01016002016YFD0100505)+1 种基金the Fundamental Research Funds for Central Research Institutes(Y2017JC48)the Natural Science Foundation of China(31371668,31471538)。
文摘Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.
基金supported by the National Natural Science Foundation of China(31171554)the National Basic Research Program of China(2009CB118301)the Natural Science Foundation of Shandong Province,China(ZR2009DQ009)
文摘Protein and starch are the most important traits in determining processing quality in wheat. In order to understand the genetic basis of the influence of Waxy protein (Wx) and high molecular weight gluten subunit (HMW-GS) on processing quality, 256 recombinant inbred lines (RILs) derived from the cross of waxy wheat Nuomai 1 and Gaocheng 8901 were used as mapping population. DArT (diversity arrays technology), SSR (simple sequence repeat), HMW-GS, and Wx markers were used to construct the molecular genetic linkage map. QTLs for mixing peak time (MPT), mixing peak value (MPV), mixing peak width (MPW), and mixing peak integral (MPI) of Mixograph parameters were evaluated in three different environments. The genetic map comprised 498 markers, including 479 DArT, 14 SSR, 2 HMW-GS, and 3 Wx protein markers, covering 4 229.7 cM with an average distance of 9.77 cM. These markers were identified on 21 chromosomes. Eighteen additive QTLs were detected in three different environments, which were distributed on chromosomes 1A, 1B, 1D, 4A, 6A, and 7D. QMPT-1D.1 and QMPT-1D.2 were close to the Glu-D1 marker accounting for 35.2, 22.22 and 36.57% of the phenotypic variance in three environments, respectively. QMPV-1D and QMPV-4A were detected in all environments, and QMPV-4A was the nearest to Wx-B1. One minor QTL, QMPI-1A, was detected under three environments with the genetic distances of 0.9 cM from the nearest marker Glu-A1, explaining from 5.31 to 6.67% of the phenotypic variance. Three pairs of epistatic QTLs were identified on chromosomes 2D and 4A. Therefore, this genetic map is very important and useful for quality trait related QTL mapping in wheat. In addition, the finding of several major QTLs, based on the genetic analyses, further suggested the importance of Glu-1 loci on dough mixing characteristics.
文摘利用普通小麦品种藁城8901和PH85-16按单粒传方法构建的重组自交系群体F6(RIL-6)共112个家系,研究了影响小麦粉及面片色泽的主要因素。结果表明:硬度、吸水率、湿面筋、干面筋、蛋白质含量,与小麦粉白度、L*值及鲜面片0 h L*值呈负相关,与小麦粉及鲜面片0 h的a*和b*值呈正相关;叶黄素和PPO活性,与小麦粉及鲜面片0 h L*值呈负相关,与b*值呈正相关;面筋指数和稳定时间,与小麦粉及面片的L*值呈正相关;淀粉糊化性状的几个参数,与小麦粉白度、L*值及鲜面片0 h L*值呈正相关,与小麦粉及鲜面片0 h的a*值呈负相关。由结果看出在小麦粉及面片色泽性状的选育过程中,对蛋白质和淀粉等组分含量进行选择的同时,也要注意内部特性的改良。选择面筋指数高、叶黄素和PPO活性低、淀粉糊化黏度高的株系,以满足人们对亮白色食品的需求。