Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin...Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.展开更多
Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the ...Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.展开更多
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ...Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.展开更多
Exciton is an electron-hole pair with Coulomb interaction,which represents the binding energy of the two particles.The electron and hole in exciton may have either the opposite or the parallel spin directions,correspo...Exciton is an electron-hole pair with Coulomb interaction,which represents the binding energy of the two particles.The electron and hole in exciton may have either the opposite or the parallel spin directions,corresponding to bright(emissive)singlet exciton or dark(non-emissive)triplet exciton,respectively.Triplet states lie below but are three times abundant than singlet states.展开更多
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker...This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.展开更多
The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of...The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.展开更多
Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination...Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination losses at the n-type interface between the perovskite and fullerene has impeded further improvement of photovoltaic performance.Here,we modify the n-type interface of FAPbI_(3) perovskite films by constructing a stereochemical two-dimensional(2D) perovskite interlayer,in which the organic cations comprise both pyridine and ammonium groups.The pyridine N donor can create stable bonding with the surface-uncoordinated Pb on the perovskite,thereby passivating the shallow-level defects and enhancing the air stability of the film.Furthermore,the pyridine N donor also offers a positive polar interface to decrease the surface work function of the perovskite film,enabling n-type modification.Ultimately,we employ a p-i-n photovoltaic(PV) device with the positive dipole interlayer at perovskite/fullerene contact and achieve remarkable photoelectric conversion efficiency(PCE) of 22.0%.展开更多
Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At pre...Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics.展开更多
Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface ...Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.展开更多
Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules ...Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.展开更多
The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesir...The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesirable redox reactions cause severe interfacial non-radiative recombination and open-circuit voltage(Voc)loss.Herein,a series of self-assembled molecules(SAMs)are employed to bind,bridge,and stabilize the NiO_(x)/perovskite interface by regulating the electrostatic potential.Based on systematically theoretical and experimental studies,4-pyrazolecarboxylic acid(4-PCA)is proven as an efficient molecule to simultaneously passivate the NiO_(x)and perovskite surface traps,release the interfacial tensile stress as well as quench the detrimental interface redox reactions,thus effectively suppressing the interfacial non-radiative recombination and enhancing the quality of perovskite crystals.Consequently,the PSCs with 4-PCA treatment exhibited an eminently increased Voc,leading to a significant increase in power conversion efficiency from 21.28%to 23.77%.Furthermore,the unencapsulated devices maintain 92.6%and 81.3%of their initial PCEs after storing in air with a relative humidity of 20%–30%for 1000 h and heating at 65℃for 500 h in a N_(2)-filled glovebox,respectively.展开更多
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce...Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of res...Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.展开更多
Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not ...Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not been fully investigated.This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care.Methods:A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled.HRD status was assessed using the AmoyDx Genomic Scar Score(GSS),with a score of≥50 considered HRD-positive.Genomic,transcriptomic,tumor microenvironmental characteristics and prognosis between HRD-positive and HRDnegative patients were analyzed.Results:Of the patients,25.1%(89/355)were HRD-positive.Compared to HRD-negative patients,HRDpositive patients had more somatic pathogenic homologous recombination repair(HRR)mutations,higher tumor mutation burden(TMB)(P<0.001),and fewer driver gene mutations(P<0.001).Furthermore,HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes,MET and MYC in epidermal growth factor receptor(EGFR)/anaplastic lymphoma kinase(ALK)mutant NSCLC,and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC.HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity.HRD-negative NSCLC showed activated signatures of major histocompatibility complex(MHC)-II,interferon(IFN)-γand effector memory CD8+T cells.HRD-positive patients had a worse prognosis and shorter progressionfree survival(PFS)to targeted therapy(first-and third-generation EGFR-TKIs)(P=0.042).Additionally,HRDpositive,EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens.Conclusions:Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC.Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC.This study highlights potential actionable alterations in HRD-positive NSCLC,suggesting possible combinational therapeutic strategies for these patients.展开更多
Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here...Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.展开更多
Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare ...Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.展开更多
BACKGROUND Primary sclerosing cholangitis(PSC)is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options.Recombinant adeno-associated virus(rAAV)provid...BACKGROUND Primary sclerosing cholangitis(PSC)is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options.Recombinant adeno-associated virus(rAAV)provides a promising platform for gene therapy on such kinds of diseases.A microRNA(miRNA)let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated.AIM To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8(rAAV8)on a xenobiotic-induced mouse model of sclerosing cholangitis.METHODS A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine(DDC)feeding for 2 wk or 6 wk.A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding.Upon sacrifice,the liver and the serum were collected from each mouse.The hepatobiliary injuries,hepatic inflammation and fibrosis were evaluated.The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot.RESULTS rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk.The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers,and prevent the proliferation of cholangiocytes and biliary fibrosis.Furthermore,inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1,which consequently inhibit of NF-κB-mediated hepatic inflammation.CONCLUSION Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis,which provides a possible clinical translation of PSC of human.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
基金support from the National Natural Science Foundation of China(62275057)the Guangxi Natural Science Foundation(2023GXNSFFA026004 and 2022GXNSFDA035066)+3 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2024034)Natural Science Foundation of Ningbo under grant(2022J149)Natural Science Foundation of Ningbo under grant(2022A-230-G)Portions of this research were carried out at the 3C SAXS-I and 9A U-SAXS beam lines of the Pohang Accelerator Laboratory(PLS-II),Republic of Korea.
文摘Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.
基金supported by“National Natural Science Foundation of China(U21A20171,U20A20245)”“Hubei Provincial Natural Science Foundation of China(2023AFA010)”+1 种基金“Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-09)”“Social Public Welfare and Basic Research Special Project of Zhongshan(2020B2015).”。
文摘Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.
基金supported by the National Natural Science Foundation of China,Nos.81730033,82171193(to XG)the Key Talent Project for Strengthening Health during the 13^(th)Five-Year Plan Period,No.ZDRCA2016069(to XG)+1 种基金the National Key R&D Program of China,No.2018YFC2001901(to XG)Jiangsu Provincial Medical Key Discipline,No.ZDXK202232(to XG)。
文摘Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.
文摘Exciton is an electron-hole pair with Coulomb interaction,which represents the binding energy of the two particles.The electron and hole in exciton may have either the opposite or the parallel spin directions,corresponding to bright(emissive)singlet exciton or dark(non-emissive)triplet exciton,respectively.Triplet states lie below but are three times abundant than singlet states.
基金supported by the National Natural Science Foundation of China(U21A20331,81903743,22005322,22279151,and 22275004)National Science Fund for Distinguished Young Scholars(21925506).
文摘This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
基金This work was supported by the National Natural Science Foundation of China(62104136,22179051)the National Key Research and Development Program of China(2021YFE0111000)+3 种基金Project of Shandong Province Higher Educational Young Innovative Team(2022KJ218)China Postdoctoral Science Foundation(2023M732104)Qingdao Postdoctoral Funding Program(QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202303032).
文摘The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.
基金financially supported by the National Ten Thousand Talent Program for Young Top-notch Talent,China,the National Natural Science Fund for Excellent Young Scholars,China(52022030)the National Natural Science Foundation of China,China(51972111,52203330)+7 种基金the Shanghai Pilot Program for Basic Research,China(22TQ1400100-5)the “Dawn”Program of Shanghai Education Commission,China(22SG28)the Shanghai Municipal Natural Science Foundation,China(22ZR1418000)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission,China(22YF1410000)the Postdoctoral Research Foundation of China,China(2021M701190)the Fundamental Research Funds for the Central Universities,China(JKD01231632,JKVD1231041)the Major Science and Technology Projects of Inner Mongolia Autonomous Region,China(2021ZD0042)the Shanghai Engineering Research Center of Hierarchical Nanomaterials,China(18DZ2252400)。
文摘Inverted perovskite solar cells(PSCs) have attracted broad research and industrial interest owing to their suppressed hysteresis,cost-effectiveness,and easy-fabrication.However,the issue of non-radiative recombination losses at the n-type interface between the perovskite and fullerene has impeded further improvement of photovoltaic performance.Here,we modify the n-type interface of FAPbI_(3) perovskite films by constructing a stereochemical two-dimensional(2D) perovskite interlayer,in which the organic cations comprise both pyridine and ammonium groups.The pyridine N donor can create stable bonding with the surface-uncoordinated Pb on the perovskite,thereby passivating the shallow-level defects and enhancing the air stability of the film.Furthermore,the pyridine N donor also offers a positive polar interface to decrease the surface work function of the perovskite film,enabling n-type modification.Ultimately,we employ a p-i-n photovoltaic(PV) device with the positive dipole interlayer at perovskite/fullerene contact and achieve remarkable photoelectric conversion efficiency(PCE) of 22.0%.
基金supported by the National Natural Science Foundation of China(32202788)the Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)+3 种基金the Fund for Shanxi“1331 Project”,China(20211331-13)the Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021063,SXBYKY2021005,and SXBYKY 2022014)the earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China(2023CYJSTX15-13)the Fundamental Research Program of Shanxi Province,China(202103021224156)。
文摘Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics.
基金National Natural Science Foundation of China (62104136, 22179051, 62204098, 52104258)Project of Shandong Province Higher Educational Young Innovative Team (2022KJ218)+3 种基金China Postdoctoral Science Foundation (2023M732104)Qingdao Postdoctoral Funding Program (QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303032)Shandong Provincial Natural Science Foundation (ZR2021ME016)。
文摘Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.
基金funded by the Slovenian Research Agency,Core Funding(No.P2-0082)and Project(No.L24487)。
文摘Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.
基金financially supported by the National Natural Science Foundation of China (U22A2078)Fundamental Research Funds for the Central Universities (2022CDJQY-007)
文摘The NiO_(x)/perovskite interface in NiO_(x)-based inverted perovskite solar cells(PSCs)is one of the main issues that restrict device performance and long-term stability,as the unwanted interfacial defects and undesirable redox reactions cause severe interfacial non-radiative recombination and open-circuit voltage(Voc)loss.Herein,a series of self-assembled molecules(SAMs)are employed to bind,bridge,and stabilize the NiO_(x)/perovskite interface by regulating the electrostatic potential.Based on systematically theoretical and experimental studies,4-pyrazolecarboxylic acid(4-PCA)is proven as an efficient molecule to simultaneously passivate the NiO_(x)and perovskite surface traps,release the interfacial tensile stress as well as quench the detrimental interface redox reactions,thus effectively suppressing the interfacial non-radiative recombination and enhancing the quality of perovskite crystals.Consequently,the PSCs with 4-PCA treatment exhibited an eminently increased Voc,leading to a significant increase in power conversion efficiency from 21.28%to 23.77%.Furthermore,the unencapsulated devices maintain 92.6%and 81.3%of their initial PCEs after storing in air with a relative humidity of 20%–30%for 1000 h and heating at 65℃for 500 h in a N_(2)-filled glovebox,respectively.
基金Qingdao Postdoctoral Funding Program,Grant/Award Number:QDBSH20220201002National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000+1 种基金Project of Shandong Province Higher Educational Young Innovative Team,Grant/Award Number:2022KJ218National Natural Science Foundation of China,Grant/Award Numbers:62104136,22179051,22109053。
文摘Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金supported by the National Natural Science Foundation of China(61874008).
文摘Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.
基金supported by the National High Level Hospital Clinical Research Funding(No.BJ-2219-195 and No.BJ-2023-090).
文摘Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not been fully investigated.This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care.Methods:A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled.HRD status was assessed using the AmoyDx Genomic Scar Score(GSS),with a score of≥50 considered HRD-positive.Genomic,transcriptomic,tumor microenvironmental characteristics and prognosis between HRD-positive and HRDnegative patients were analyzed.Results:Of the patients,25.1%(89/355)were HRD-positive.Compared to HRD-negative patients,HRDpositive patients had more somatic pathogenic homologous recombination repair(HRR)mutations,higher tumor mutation burden(TMB)(P<0.001),and fewer driver gene mutations(P<0.001).Furthermore,HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes,MET and MYC in epidermal growth factor receptor(EGFR)/anaplastic lymphoma kinase(ALK)mutant NSCLC,and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC.HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity.HRD-negative NSCLC showed activated signatures of major histocompatibility complex(MHC)-II,interferon(IFN)-γand effector memory CD8+T cells.HRD-positive patients had a worse prognosis and shorter progressionfree survival(PFS)to targeted therapy(first-and third-generation EGFR-TKIs)(P=0.042).Additionally,HRDpositive,EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens.Conclusions:Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC.Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC.This study highlights potential actionable alterations in HRD-positive NSCLC,suggesting possible combinational therapeutic strategies for these patients.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE 03030004)National Natural Science Foundation of China (Nos. 11535013 and 11975232)
文摘Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.
文摘Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.
基金Supported by the National Natural Science Foundation of China,No.82172297Natural Science Foundation of Jiangsu Province of China,No.BK20211346 and No.BK20201011+1 种基金Natural Science Foundation of Jiangsu Higher Education Institutions of China,No.22KJA310007Xuzhou Science and Technology Project,No.KC22055.
文摘BACKGROUND Primary sclerosing cholangitis(PSC)is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options.Recombinant adeno-associated virus(rAAV)provides a promising platform for gene therapy on such kinds of diseases.A microRNA(miRNA)let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated.AIM To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8(rAAV8)on a xenobiotic-induced mouse model of sclerosing cholangitis.METHODS A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine(DDC)feeding for 2 wk or 6 wk.A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding.Upon sacrifice,the liver and the serum were collected from each mouse.The hepatobiliary injuries,hepatic inflammation and fibrosis were evaluated.The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot.RESULTS rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk.The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers,and prevent the proliferation of cholangiocytes and biliary fibrosis.Furthermore,inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1,which consequently inhibit of NF-κB-mediated hepatic inflammation.CONCLUSION Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis,which provides a possible clinical translation of PSC of human.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.