Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ...Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.展开更多
针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积...针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。展开更多
水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)...水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)及递归最小二乘(Recursive Least Squares,RLS)算法在估计稀疏信道时不仅复杂度较高,而且在求解线性回归模型时,因忽略自变量的多重共线性而使稀疏信道估计精度降低。针对上述问题,首先,在经典RLS算法的代价函数中加入信道系数的范数对其进行约束,从而提高了稀疏信道估计的精度,然后,采用滑动窗的方式对其代价函数进行处理以减少算法的计算量。在此基础上又引入二分坐标下降(Dichotomous Coordinate Descent,DCD)算法搜索单次迭代中使代价函数最小的解,进一步降低了算法的复杂度。仿真结果表明,文中所提的算法相较于经典算法在估计精度和复杂度方面具有一定的优越性。展开更多
自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。寻求收敛速度快、计算复杂性低、数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。本文介绍了目前两种典型的自适应滤波算法,即最小均方(Least Mean Sq...自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。寻求收敛速度快、计算复杂性低、数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。本文介绍了目前两种典型的自适应滤波算法,即最小均方(Least Mean Square,LMS)算法和递归最小二乘(RecursiveLeast Square,RLS)算法,并对这两种典型自适应滤波算法的性能特点进行分析及仿真实现,给出了算法性能的综合评价。展开更多
In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the ...In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the process flow of RLS algorithm are described.Through example simulation,simulation figures of the adaptive de-noising system are obtained.By analysis and comparison,it can be proved that RLS adaptive filtering is capable of eliminating the noises and obtaining useful signals in a relatively good manner.Therefore,the validity of this method and the rationality of this system are demonstrated.展开更多
永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(re...永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。展开更多
Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
文摘Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.
文摘针对并联型有源电力滤波器(active power filter,APF)谐波检测环节的延时和谐波电流跟踪环节的鲁棒性差、跟踪精度不高的问题,建立了系统解耦后的数学模型,提出了基于递归最小二乘(recursive least squares,RLS)算法的并联型APF全局积分滑模变结构控制策略。谐波检测环节采用改进的瞬时无功功率理论的id-iq法,用RLS自适应滤波器替换传统的Butterworth低通滤波器,解决了传统的Butterworth低通滤波器因延时而导致的一个基波周期(20 ms)内检测盲区问题。谐波电流跟踪环节采用全局积分滑模变结构控制方法,引入了全局积分滑模面,运用Lyapunov稳定性理论导出的控制律兼顾了全局滑模的快速性和积分滑模的准确性。在解决了谐波检测环节延时的情况下,将全局积分滑模控制策略与传统的PI控制和滞环控制对比,仿真实验结果表明:全局积分滑模控制对指令电流具有更高的跟踪精度,且具有更低的电网侧电流总谐波畸变率(total harmonic distortion,THD)。
文摘水声信道具有稀疏性的特点,因此高精度低复杂度的稀疏信道估计算法对水声通信具有重要意义。基于自适应滤波算法的信道估计问题本质上是线性回归模型参数的求解问题,传统的最小二乘(Least Square,LS)、最小均方(Least Mean Square,LMS)及递归最小二乘(Recursive Least Squares,RLS)算法在估计稀疏信道时不仅复杂度较高,而且在求解线性回归模型时,因忽略自变量的多重共线性而使稀疏信道估计精度降低。针对上述问题,首先,在经典RLS算法的代价函数中加入信道系数的范数对其进行约束,从而提高了稀疏信道估计的精度,然后,采用滑动窗的方式对其代价函数进行处理以减少算法的计算量。在此基础上又引入二分坐标下降(Dichotomous Coordinate Descent,DCD)算法搜索单次迭代中使代价函数最小的解,进一步降低了算法的复杂度。仿真结果表明,文中所提的算法相较于经典算法在估计精度和复杂度方面具有一定的优越性。
文摘自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。寻求收敛速度快、计算复杂性低、数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。本文介绍了目前两种典型的自适应滤波算法,即最小均方(Least Mean Square,LMS)算法和递归最小二乘(RecursiveLeast Square,RLS)算法,并对这两种典型自适应滤波算法的性能特点进行分析及仿真实现,给出了算法性能的综合评价。
基金The Key Program of National Natural Science of China(No.U1261205)Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the process flow of RLS algorithm are described.Through example simulation,simulation figures of the adaptive de-noising system are obtained.By analysis and comparison,it can be proved that RLS adaptive filtering is capable of eliminating the noises and obtaining useful signals in a relatively good manner.Therefore,the validity of this method and the rationality of this system are demonstrated.
文摘永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.