In this paper we propose a novel model "recursive directed graph" based on feature structure, and apply it to represent the semantic relations of postpositive attributive structures in biomedical texts. The usages o...In this paper we propose a novel model "recursive directed graph" based on feature structure, and apply it to represent the semantic relations of postpositive attributive structures in biomedical texts. The usages of postpositive attributive are complex and variable, especially three categories: present participle phrase, past participle phrase, and preposition phrase as postpositire attributive, which always bring the difficulties of automatic parsing. We summarize these categories and annotate the semantic information. Compared with dependency structure, feature structure, being recursive directed graph, enhances semantic information extraction in biomedical field. The annotation results show that recursive directed graph is more suitable to extract complex semantic relations for biomedical text mining.展开更多
It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semanti...It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.展开更多
基金Supported by the National Natural Science Foundation of China(61202193,61202304)the Major Projects of Chinese National Social Science Foundation(11&ZD189)the Chinese Postdoctoral Science Foundation(2013M540593,2014T70722)
文摘In this paper we propose a novel model "recursive directed graph" based on feature structure, and apply it to represent the semantic relations of postpositive attributive structures in biomedical texts. The usages of postpositive attributive are complex and variable, especially three categories: present participle phrase, past participle phrase, and preposition phrase as postpositire attributive, which always bring the difficulties of automatic parsing. We summarize these categories and annotate the semantic information. Compared with dependency structure, feature structure, being recursive directed graph, enhances semantic information extraction in biomedical field. The annotation results show that recursive directed graph is more suitable to extract complex semantic relations for biomedical text mining.
基金Supported by the National Natural Science Foundation of China(61202193,61202304)the Major Projects of Chinese National Social Science Foundation(11&ZD189)+2 种基金the Chinese Postdoctoral Science Foundation(2013M540593,2014T70722)the Accomplishments of Listed Subjects in Hubei Prime Subject Developmentthe Open Foundation of Shandong Key Lab of Language Resource Development and Application
文摘It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.