Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T...Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T) ranging from 70°C to 50°C and 5 different relative humidity (RH) conditions. The samples were investigated using the expressate method to follow chromium fixation. Red pine fixes faster than southern pine under all 11 post treatment schedules. The fixation rates for both species are not significantly different while the blocks were fixed under 6 fixation/drying schedules that differed only in the order of T/RH conditions applied. The rate of fixation of all samples in any fixation stage were reduced when the blocks were fixed under lower humidity conditions in spite of no change in chamber temperature. Some of this influence can be attributed to the effect of humidity on heat transfer into the wood and cooling of the wood surface.展开更多
In Korea, damaging typhoons related to climate change have increased steadily since the 1990s. Red pine (Pinus densiflora) forests in Gwangneung Forest were greatly disturbed by typhoon Kompasu in 2010. A survey was...In Korea, damaging typhoons related to climate change have increased steadily since the 1990s. Red pine (Pinus densiflora) forests in Gwangneung Forest were greatly disturbed by typhoon Kompasu in 2010. A survey was carried out to clarify differences in ground beetle (Coleoptera: Carabidae) communities between forest gaps and undamaged forests. Ground beetles were sampled using pitfall traps from early May to late October 2011. Vegetation changes, litter layer, organic matter layer, and soil conditions were also measured. A total of 1035 ground beetles of 32 species were collected. Contrary to our expectation, species richness, abundance, and community structure of the ground beetles in forest gaps were similar to those in undamaged forests. Species richness and abundance of habitat type were also similar. However, species diversity and estimated species richness in forest gaps were significantly higher than in undamaged forests. These findings suggest that forest gaps formed by a typhoon did not lead to great change in ground beetle communities.展开更多
The effects of fixation drying conditions on fixation rates and chemical leachab ility were investigated with CCA-C treated red pine (Pinus koraiensis Sieb. )and southern pine specimens at a retention of 6 4 kg·...The effects of fixation drying conditions on fixation rates and chemical leachab ility were investigated with CCA-C treated red pine (Pinus koraiensis Sieb. )and southern pine specimens at a retention of 6 4 kg·m -3 , and under 11 post-treatment schedules ra ng ing from 50~70℃ and 5 different relative humidity conditions. These samples w e re monitored by expressing residual liquid and analyzing it for hexavatent chrom ium content. Samples were subjected to AWPA E11-97 (AWPA 1997) standard leachi n g tests after fixation. Generally, red pine fixed slightly faster than southern pine for most fixation conditions. High temperature, high humidity, fixation co nditions during the fixation/drying schedules resulted in faster fixation and lo wer leaching of chromium and arsenic elements compared to low humidity condition s. Copper leaching showed no significant difference under 11 fixation /drying co nditions for both species. All of the CCA components were leached significantly more in red pine than southern pine. Further work is needed to examine the effec ts of different fixation/drying conditions on leaching from full\|size samples a n d to optimize dry/wet bulb depression for fixation/drying of CCA treated lumber.展开更多
Red pine (Pinus resinosia Ait) and southern pine (Pinus spp.) sapwood blocks were pressure treated with CCA-C at retention of 6.4, 2.0, 1.5 kg(m-3 followed by fixation using 11 post-treatment schedules ranging from 50...Red pine (Pinus resinosia Ait) and southern pine (Pinus spp.) sapwood blocks were pressure treated with CCA-C at retention of 6.4, 2.0, 1.5 kg(m-3 followed by fixation using 11 post-treatment schedules ranging from 50-70 (C and 5 different relative humidity conditions. The effect of these post-treatment schedules on fixation rate, chemical leachability and decay resistant once were evaluated to better understand the effects of fixation/drying conditions on leachability and biodeterioration. Southern pine blocks fixes slightly slower than red pine. Fixation of CCA at high temperature high humidity, essential initially fixation at high humidity for fixation/drying schedules, resulted in lower leaching of chromium and arsenic elements than high temperature low humidity or initially fixation at the high temperature low humidity conditions. Copper leaching was indicated no significant difference under 11 fixation/drying conditions for both species. Weight losses for southern pine by Chaetomium globosum was lower than red pine by Gloeophyllom trabeum. There were some different capacities of decay resistance for both species under those post treatment conditions.展开更多
Background:Scaling sap flux measurements to whole-tree water use or stand-level transpiration is often done using measurements conducted at a single point in the sapwood of the tree and has the potential to cause sign...Background:Scaling sap flux measurements to whole-tree water use or stand-level transpiration is often done using measurements conducted at a single point in the sapwood of the tree and has the potential to cause significant errors.Previous studies have shown that much of this uncertainty is related to(i)measurement of sapwood area and(ii)variations in sap flow at different depths within the tree sapwood.Results:This study measured sap flux density at three depth intervals in the sapwood of 88-year-old red pine(Pinus resinosa)trees to more accurately estimate water-use at the tree-and stand-level in a plantation forest near Lake Erie in Southern Ontario,Canada.Results showed that most of the water transport(65%)occurred in the outermost sapwood,while only 26%and 9%of water was transported in the middle and innermost depths of sapwood,respectively.Conclusions:These results suggest that failing to consider radial variations in sap flux density within trees can lead to an overestimation of transpiration by as much as 81%,which may cause large uncertainties in water budgets at the ecosystem and catchment scale.This study will help to improve our understanding of water use dynamics and reduce uncertainties in sap flow measurements in the temperate pine forest ecosystems in the Great Lakes region and help in protecting these forests in the face of climate change.展开更多
Background:Variable Retention Harvesting(VRH)is a forest management practice applied to enhance forest growth,improve biodiversity,preserve ecosystem function and provide economic revenue from harvested timber.There a...Background:Variable Retention Harvesting(VRH)is a forest management practice applied to enhance forest growth,improve biodiversity,preserve ecosystem function and provide economic revenue from harvested timber.There are many different forms and compositions in which VRH is applied in forest ecosystems.In this study,the impacts of four different VRH treatments on transpiration were evaluated in an 83-year-old red pine(Pinus Pinus resinosa)plantation forest in the Great Lakes region in Canada.These VRH treatments included 55%aggregated crown retention(55A),55%dispersed crown retention(55D),33%aggregated crown retention(33A),33%dispersed crown retention(33D)and unharvested control(CN)plot.These VRH treatments were implemented in 1-ha plots in the winter of 2014,while sap flow measurements were conducted from 2018 to 2020.Results:Study results showed that tree-level transpiration was highest among trees in the 55D treatment,followed by 33D,55A,33A and CN plots.We found that photosynthetically active radiation(PAR)and vapor pressure deficit(VPD)were major controls or drivers of transpiration in all VRH treatments.Our study suggests that dispersed or distributed retention of 55%basal area(55D)is the ideal forest management technique to enhance transpiration and forest growth.Conclusions:This study will help researchers,forest managers and decision-makers to improve their understanding of water cycling in forest ecosystem and adopt the best forest management regimes to enhance forest growth,health and resiliency to climate change.展开更多
Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil...Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil will be damaged, resulting in higher viscosity, higher water retention rate and lower air permeability of the soil. The germination rate of Chinese pine( Pinus tabulacformic Carr. ) seeds sowed in soil treated with sulphuric acid(H 2SO 4) decreased compared to that for untreated soil. The direct cause was the large amount of Al ions leached out because of low pH values(≥3.5). The added acid decreased the soil aggregation and increased the number of micro aggregates(under 250 μm in diameter). Such changes increased the soil's viscosity, which tied the pine needles to the soil after the seeds had germinated and prevented the seedlings from fully developing.展开更多
Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follow...Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.展开更多
Red Pine seedlings were grown in the potted soils with different acidity (pH=4.5,5.5,6.5,7.5,8.0) to investigate their physiological responses to soil pH,and futher to evaluate the soil pH feasibility. Dramatic physio...Red Pine seedlings were grown in the potted soils with different acidity (pH=4.5,5.5,6.5,7.5,8.0) to investigate their physiological responses to soil pH,and futher to evaluate the soil pH feasibility. Dramatic physiological responses of Red Pine seedlings were detected under various soil pH treatments. Under soil pH 5.5,the seedling foliages grew best,with the lowest malondialdehyde content,ion leakage and soluble substance content,and the highest carotinoid content and antioxidant enzyme activities;With soil pH 7.5 and 8.0 treatments,the seedling needles developed poorest,with greater membrane lipid peroxidation and lower antioxidant enzyme activities,and the greater cell membrane injury and soluble substance content. Results suggested that Red Pine seedlings was mostly adapt to soil with pH of 5.5,followed by soils with pH of 4.5 and 6.5,and could hardly adapted to soil with pH of 7.5 and higher.展开更多
文摘Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m?3 are compared at temperature (T) ranging from 70°C to 50°C and 5 different relative humidity (RH) conditions. The samples were investigated using the expressate method to follow chromium fixation. Red pine fixes faster than southern pine under all 11 post treatment schedules. The fixation rates for both species are not significantly different while the blocks were fixed under 6 fixation/drying schedules that differed only in the order of T/RH conditions applied. The rate of fixation of all samples in any fixation stage were reduced when the blocks were fixed under lower humidity conditions in spite of no change in chamber temperature. Some of this influence can be attributed to the effect of humidity on heat transfer into the wood and cooling of the wood surface.
基金supported by the Korea Forest Research Institute(Project FE 0100-2009-01,effect of climate change on forest ecosystem and adaptation of forest ecosystem)
文摘In Korea, damaging typhoons related to climate change have increased steadily since the 1990s. Red pine (Pinus densiflora) forests in Gwangneung Forest were greatly disturbed by typhoon Kompasu in 2010. A survey was carried out to clarify differences in ground beetle (Coleoptera: Carabidae) communities between forest gaps and undamaged forests. Ground beetles were sampled using pitfall traps from early May to late October 2011. Vegetation changes, litter layer, organic matter layer, and soil conditions were also measured. A total of 1035 ground beetles of 32 species were collected. Contrary to our expectation, species richness, abundance, and community structure of the ground beetles in forest gaps were similar to those in undamaged forests. Species richness and abundance of habitat type were also similar. However, species diversity and estimated species richness in forest gaps were significantly higher than in undamaged forests. These findings suggest that forest gaps formed by a typhoon did not lead to great change in ground beetle communities.
文摘The effects of fixation drying conditions on fixation rates and chemical leachab ility were investigated with CCA-C treated red pine (Pinus koraiensis Sieb. )and southern pine specimens at a retention of 6 4 kg·m -3 , and under 11 post-treatment schedules ra ng ing from 50~70℃ and 5 different relative humidity conditions. These samples w e re monitored by expressing residual liquid and analyzing it for hexavatent chrom ium content. Samples were subjected to AWPA E11-97 (AWPA 1997) standard leachi n g tests after fixation. Generally, red pine fixed slightly faster than southern pine for most fixation conditions. High temperature, high humidity, fixation co nditions during the fixation/drying schedules resulted in faster fixation and lo wer leaching of chromium and arsenic elements compared to low humidity condition s. Copper leaching showed no significant difference under 11 fixation /drying co nditions for both species. All of the CCA components were leached significantly more in red pine than southern pine. Further work is needed to examine the effec ts of different fixation/drying conditions on leaching from full\|size samples a n d to optimize dry/wet bulb depression for fixation/drying of CCA treated lumber.
文摘Red pine (Pinus resinosia Ait) and southern pine (Pinus spp.) sapwood blocks were pressure treated with CCA-C at retention of 6.4, 2.0, 1.5 kg(m-3 followed by fixation using 11 post-treatment schedules ranging from 50-70 (C and 5 different relative humidity conditions. The effect of these post-treatment schedules on fixation rate, chemical leachability and decay resistant once were evaluated to better understand the effects of fixation/drying conditions on leachability and biodeterioration. Southern pine blocks fixes slightly slower than red pine. Fixation of CCA at high temperature high humidity, essential initially fixation at high humidity for fixation/drying schedules, resulted in lower leaching of chromium and arsenic elements than high temperature low humidity or initially fixation at the high temperature low humidity conditions. Copper leaching was indicated no significant difference under 11 fixation/drying conditions for both species. Weight losses for southern pine by Chaetomium globosum was lower than red pine by Gloeophyllom trabeum. There were some different capacities of decay resistance for both species under those post treatment conditions.
基金funded by the Natural Sciences and Engineering Research Council(NSREC)the Global Water Futures Program(GWF)the Ontario Ministry of Environment,Conservation and Parks(MOECP).
文摘Background:Scaling sap flux measurements to whole-tree water use or stand-level transpiration is often done using measurements conducted at a single point in the sapwood of the tree and has the potential to cause significant errors.Previous studies have shown that much of this uncertainty is related to(i)measurement of sapwood area and(ii)variations in sap flow at different depths within the tree sapwood.Results:This study measured sap flux density at three depth intervals in the sapwood of 88-year-old red pine(Pinus resinosa)trees to more accurately estimate water-use at the tree-and stand-level in a plantation forest near Lake Erie in Southern Ontario,Canada.Results showed that most of the water transport(65%)occurred in the outermost sapwood,while only 26%and 9%of water was transported in the middle and innermost depths of sapwood,respectively.Conclusions:These results suggest that failing to consider radial variations in sap flux density within trees can lead to an overestimation of transpiration by as much as 81%,which may cause large uncertainties in water budgets at the ecosystem and catchment scale.This study will help to improve our understanding of water use dynamics and reduce uncertainties in sap flow measurements in the temperate pine forest ecosystems in the Great Lakes region and help in protecting these forests in the face of climate change.
基金This study was funded by the Natural Sciences and Engineering Research Council(NSREC),the Global Water Futures Program(GWF),and the Ontario Ministry of Environment,Conservation and Parks(MOECP)grants.
文摘Background:Variable Retention Harvesting(VRH)is a forest management practice applied to enhance forest growth,improve biodiversity,preserve ecosystem function and provide economic revenue from harvested timber.There are many different forms and compositions in which VRH is applied in forest ecosystems.In this study,the impacts of four different VRH treatments on transpiration were evaluated in an 83-year-old red pine(Pinus Pinus resinosa)plantation forest in the Great Lakes region in Canada.These VRH treatments included 55%aggregated crown retention(55A),55%dispersed crown retention(55D),33%aggregated crown retention(33A),33%dispersed crown retention(33D)and unharvested control(CN)plot.These VRH treatments were implemented in 1-ha plots in the winter of 2014,while sap flow measurements were conducted from 2018 to 2020.Results:Study results showed that tree-level transpiration was highest among trees in the 55D treatment,followed by 33D,55A,33A and CN plots.We found that photosynthetically active radiation(PAR)and vapor pressure deficit(VPD)were major controls or drivers of transpiration in all VRH treatments.Our study suggests that dispersed or distributed retention of 55%basal area(55D)is the ideal forest management technique to enhance transpiration and forest growth.Conclusions:This study will help researchers,forest managers and decision-makers to improve their understanding of water cycling in forest ecosystem and adopt the best forest management regimes to enhance forest growth,health and resiliency to climate change.
文摘Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil will be damaged, resulting in higher viscosity, higher water retention rate and lower air permeability of the soil. The germination rate of Chinese pine( Pinus tabulacformic Carr. ) seeds sowed in soil treated with sulphuric acid(H 2SO 4) decreased compared to that for untreated soil. The direct cause was the large amount of Al ions leached out because of low pH values(≥3.5). The added acid decreased the soil aggregation and increased the number of micro aggregates(under 250 μm in diameter). Such changes increased the soil's viscosity, which tied the pine needles to the soil after the seeds had germinated and prevented the seedlings from fully developing.
文摘Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.
文摘Red Pine seedlings were grown in the potted soils with different acidity (pH=4.5,5.5,6.5,7.5,8.0) to investigate their physiological responses to soil pH,and futher to evaluate the soil pH feasibility. Dramatic physiological responses of Red Pine seedlings were detected under various soil pH treatments. Under soil pH 5.5,the seedling foliages grew best,with the lowest malondialdehyde content,ion leakage and soluble substance content,and the highest carotinoid content and antioxidant enzyme activities;With soil pH 7.5 and 8.0 treatments,the seedling needles developed poorest,with greater membrane lipid peroxidation and lower antioxidant enzyme activities,and the greater cell membrane injury and soluble substance content. Results suggested that Red Pine seedlings was mostly adapt to soil with pH of 5.5,followed by soils with pH of 4.5 and 6.5,and could hardly adapted to soil with pH of 7.5 and higher.