Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ...Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.展开更多
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ...In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.展开更多
Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and flu...Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.展开更多
A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated...A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated. The photoluminescence results show that all samples can be excited efficiently by UV (396 nm) light and blue (466 nm) light and emit red (615 nm) light with line spectra, which are coupled well with the characteristic emission from UV-LED and blue LED, respectively. The experimental results and their analysis suggest that the energy transfer occurs due to dipole-dipole interactions among Eu3+ ions in LiKGd2-xEux(MoO4)4. Compared with Cao.8MoO4: Eu0.2^3-, the emission intensity of LiKGdo.9(MoO4)4: Eu1.1^3- is about 1.4 times higher and the CIE chromaticity coordinates are as close to the National Television System Committee (NTSC) standard values as those of Cao.8MoO4: Eu0.2^3-. The optical properties suggest that LiKGdo.9(MoO4)4: Eu1.1^3- is an efficient red-emitting phosphor for white LEDs applications.展开更多
Recently,borate compounds have received much attention in the field of rare earth doped phosphors due to their excellent luminescent performance.In this work,to explore the potential in LED and FED applications,the Cs...Recently,borate compounds have received much attention in the field of rare earth doped phosphors due to their excellent luminescent performance.In this work,to explore the potential in LED and FED applications,the CsBaB_(3)O_(6):Eu^(3+)phosphor was investigated in detail by using Rietveld refinement,DFT calculations,photoluminescent and cathodoluminescent spectra.As a result,CsBaB_(3)O_(6)has a planar stacked three-dimensional layered structure.Under the excitation of 395 nm n-UV light and electron beam,CsBaB_(3)O_(6):Eu^(3+)phosphor exhibits a typical red emission of Eu^(3+).A good thermal stability and good resistance to saturation and degradation were observed in the CsBaB_(3)O_(6):Eu^(3+)phosphor.The related photoluminescent and cathodoluminescent mechanisms were studied.The results indicate that CsBaB_(3)O_(6):Eu^(3+)phosphor has potential in multifunctional applications.展开更多
A series of new double perovskite LaEuCaSnO(0≤x≤0.8)red phosphors were synthesized by traditional solid-state reaction.The phase,micro structure,photoluminescence(PL)properties,quantum efficiency,and thermal stabili...A series of new double perovskite LaEuCaSnO(0≤x≤0.8)red phosphors were synthesized by traditional solid-state reaction.The phase,micro structure,photoluminescence(PL)properties,quantum efficiency,and thermal stability of the phosphors were investigated.LaCaSnOmatrix has a monoclinic double perovskite structure with space group P2/n.Under near-ultraviolet(UV)light at395 nm,LaEuCaSnOphosphors exhibit the most typical red emission peak at 614 nm,which corresponds to~5 D→~7 Felectric dipole transition of Eu.The optimum Eudoping content is attained at x=0.5,and the LaEuCaSnOphosphor shows a moderate quantum efficiency(32.3%)and high color purity(92.2%).Besides,the temperature-dependent spectrum of the phosphor was studied.The emission intensity of Euat 423 K decreases to 70.94%of the initial intensity at 303 K,and the activation energyΔE is estimated to be 0.232 eV,suggesting that the phosphors possess good thermal stability.The fabricated w-LED based on the phosphors has higher Ra(89),lower CCT(4539 K),and better chromaticity coo rdinates(0.371,0.428).These results prove that the Eu-doped LaCaSnOred phosphor has great potential applications in w-LEDs.展开更多
Novel trivalent europium(Eu^(3+))-activated La_(7)Ta_(3)W_(4)O_(30):xEu^(3+)(x=0.5 mol%-40 mol%) red-emitting phosphors were synthesized by means of a high-temperature solid-state reaction.The structure,morphology,pho...Novel trivalent europium(Eu^(3+))-activated La_(7)Ta_(3)W_(4)O_(30):xEu^(3+)(x=0.5 mol%-40 mol%) red-emitting phosphors were synthesized by means of a high-temperature solid-state reaction.The structure,morphology,photoluminescence,thermal-stability properties,lifetime,and color-rendering of the prepared phosphors were investigated in detail.The La_(7)Ta_(3)W_(4)O_(30):Eu^(3+) phosphors show five emission peaks under near-ultraviolet(n-UV) at 397 nm,and these peaks are ascribed to the transitions of ^(5)D0-^(7)Fj(j=0,1,2,3 and 4) by Eu^(3+) ions.The optimal doping concentration of Eu^(3+) is 20 mol%,and the critical distance of the energy transfer between the Eu^(3+)ions was calculated to be 1.768 nm.The quenching temperature(T_(0.5)) of La_(7)Ta_(3)W_(4)O_(30):20 mol%Eu^(3+) is about 440 K.The quantum yield(QY) was measured to be 85.85%.The fabricated white-light-emitting diodes(w-LEDs) possess high color-rendering index(R_(a)) of 90,and high correlated color temperature(CCT) of 5810 K,respectively.The Commission Internationale de L’Eclairage(CIE) coordinates are(0.311,0.322).Therefore,the prepared phosphor has a promising application for w-LEDs.展开更多
A red-emitting phosphor GdNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction technique. The phosphor was characterized by X-ray diffraction (XRD), particle size analyzer and fluorescence spect...A red-emitting phosphor GdNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction technique. The phosphor was characterized by X-ray diffraction (XRD), particle size analyzer and fluorescence spectrometer. The single phase of GdNbO4:Eu3+,Bi3+ was obtained at 1150~C and the average particle diameter was about 2.30 μm. Excitation and emission spectra reveal that the phosphor can be ef- ficiently excited by ultraviolet (UV) light (394 nm) and emit the strong red light of 612 nm due to the Eu3+ transition of SD0~TF2. The opti- mum content of Eu3+ doped in the phosphor GdNbOn:Eu3+ is 20mo1%. The phosphor Gdo.80NbO4:0.20Eu3+,0.03Bi3+ shows much stronger photoluminescence intensity and better chromaticity coordinates (x=0.642, 0.352) than GdNbO4:Eu3+. It is confirmed that Gdo.80NbO4:0.20Eu3+,0.03Bi3+ is a potential candidate for near-UV chip-based white light emitting diodes.展开更多
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices...Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications.展开更多
A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)...A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.展开更多
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint...A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.展开更多
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and...Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.展开更多
Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),v...Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),variations in the light-emitting regimes of bubbles were noted to correspond with increments in the driving acoustic intensity.Specifically,the bubbles were observed to perform a dance-like motion 2 cm below the multi-bubble sonoluminescence(MBSL)cluster,traversing a 25-mm^(2) grid during the camera exposure period.Spectral analysis conducted at the beginning of the experiment showed a gradual attenuation of CN(B^(2)S–X^(2)S)emission concurrent with a strengthening of Ar(4p–4s)atom emission lines.The application of a theoretical temperature model to the spectral data revealed that the internal temperature of the bubbles escalates swiftly upon their implosion.This study is instrumental in advancing the comprehension of the underlying mechanisms of sonoluminescence and in the formulation of a dynamic model for the behavior of the bubbles.展开更多
A series of Al3+-doped 3.5MgO·0.5MgF2·GeO2:Mn4+red-emitting phosphors is synthesized by high temperature solid-state reaction. The broad excitation band at 300 nm–380 nm, resulting from the4A2→4T1transitio...A series of Al3+-doped 3.5MgO·0.5MgF2·GeO2:Mn4+red-emitting phosphors is synthesized by high temperature solid-state reaction. The broad excitation band at 300 nm–380 nm, resulting from the4A2→4T1transition of Mn4+,exhibits a blue shift with the increase of Al2O3 content. The observation of the decreased Mn4+–O2-distance is explained by the crystal field theory. The temperature-dependent photoluminescence spectra with various amounts of Al2O3 content are comparatively measured and the calculation shows that the activation energy increases up to 0.41 eV at the Al2O3 content of 0.1 mol. The maximum phonon densities of state for these samples are calculated from Raman spectra and they are correlated with the thermal properties.展开更多
The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation...The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.展开更多
Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)na...Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides.展开更多
A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and the...A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).展开更多
At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a ...At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a microwave-assisted fast synthesis approach to obtain a Sm^(3+)-activated borotellurate Na_(2)Y_(2)TeO_(4)(BO_(3))_(2)(NYTB)red phosphor with high crystallinity,excellent thermostability,and low chromaticity shift.For the NYTB-based phosphor,in contrast to the conventional solid-state synthesis,the microwave-assisted synthesis method involves lower synthesis temperature and shorter processing time.Additionally,the concentration quenching mechanism was determined.The w-LED device packaged with the studied phosphor exhibits a near-standard white light with proper CCT and high Ra parameters.展开更多
The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the p...The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the pure YAG phase exists at a relatively lower sintering temperature of 1400 ℃. The smaller sizes of phosphors in the ranges of 1 - 3 μm are obtained due to the contribution of seeding effects of nano-sized alumina particles to strengthen each step of the processes. Both the excitation and emission spectra of photoluminescence of the phosphor obtained at 1400 ℃ meet well with the spectroscopic requirements of the WLED phosphors.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51972130)the Startup Fund of Huazhong University of Science and Technologythe Director Fund of Wuhan National Laboratory for Optoelectronics
文摘Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.
基金Funded by the Primary Research and Development Plan of Jiangsu Province(No.BE2016175)。
文摘In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
基金Project supported by the National Natural Science Foundation of China (20675023)
文摘Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.
基金supported by the Major Science and Technology Projects of Wuhan City Science and Technology Bureau (Grant No.200810321148)
文摘A series of novel red-emitting phosphors scheelite-like triple molybdates LiKGd2.xEux(MoO4)4(0.1≤ x ≤ 1.9) were synthesized by solid state reaction method and their photoluminescence properties were investigated. The photoluminescence results show that all samples can be excited efficiently by UV (396 nm) light and blue (466 nm) light and emit red (615 nm) light with line spectra, which are coupled well with the characteristic emission from UV-LED and blue LED, respectively. The experimental results and their analysis suggest that the energy transfer occurs due to dipole-dipole interactions among Eu3+ ions in LiKGd2-xEux(MoO4)4. Compared with Cao.8MoO4: Eu0.2^3-, the emission intensity of LiKGdo.9(MoO4)4: Eu1.1^3- is about 1.4 times higher and the CIE chromaticity coordinates are as close to the National Television System Committee (NTSC) standard values as those of Cao.8MoO4: Eu0.2^3-. The optical properties suggest that LiKGdo.9(MoO4)4: Eu1.1^3- is an efficient red-emitting phosphor for white LEDs applications.
基金Project supported by the National Natural Science Foundation of China(51802138,51702147)the Youth Project of Fujian Education Department(Science and Technology)(JAT170565)。
文摘Recently,borate compounds have received much attention in the field of rare earth doped phosphors due to their excellent luminescent performance.In this work,to explore the potential in LED and FED applications,the CsBaB_(3)O_(6):Eu^(3+)phosphor was investigated in detail by using Rietveld refinement,DFT calculations,photoluminescent and cathodoluminescent spectra.As a result,CsBaB_(3)O_(6)has a planar stacked three-dimensional layered structure.Under the excitation of 395 nm n-UV light and electron beam,CsBaB_(3)O_(6):Eu^(3+)phosphor exhibits a typical red emission of Eu^(3+).A good thermal stability and good resistance to saturation and degradation were observed in the CsBaB_(3)O_(6):Eu^(3+)phosphor.The related photoluminescent and cathodoluminescent mechanisms were studied.The results indicate that CsBaB_(3)O_(6):Eu^(3+)phosphor has potential in multifunctional applications.
基金Project supported by the National Natural Science Foundation of China(61974114)。
文摘A series of new double perovskite LaEuCaSnO(0≤x≤0.8)red phosphors were synthesized by traditional solid-state reaction.The phase,micro structure,photoluminescence(PL)properties,quantum efficiency,and thermal stability of the phosphors were investigated.LaCaSnOmatrix has a monoclinic double perovskite structure with space group P2/n.Under near-ultraviolet(UV)light at395 nm,LaEuCaSnOphosphors exhibit the most typical red emission peak at 614 nm,which corresponds to~5 D→~7 Felectric dipole transition of Eu.The optimum Eudoping content is attained at x=0.5,and the LaEuCaSnOphosphor shows a moderate quantum efficiency(32.3%)and high color purity(92.2%).Besides,the temperature-dependent spectrum of the phosphor was studied.The emission intensity of Euat 423 K decreases to 70.94%of the initial intensity at 303 K,and the activation energyΔE is estimated to be 0.232 eV,suggesting that the phosphors possess good thermal stability.The fabricated w-LED based on the phosphors has higher Ra(89),lower CCT(4539 K),and better chromaticity coo rdinates(0.371,0.428).These results prove that the Eu-doped LaCaSnOred phosphor has great potential applications in w-LEDs.
基金Project supported by the Fundamental Research Funds for the Central Universities(2452019076)Undergraduate Innovation Fund of Northwest A&F University+4 种基金China(201910712037)Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications(2019XGJSKFJJ01)the Construction Program of the Key Discipline in Hunan Provincethe Projects of the Education Department of Hunan Province(18A465)Science and Technology Plan Project of Chenzhou City(jsyf2017014)。
文摘Novel trivalent europium(Eu^(3+))-activated La_(7)Ta_(3)W_(4)O_(30):xEu^(3+)(x=0.5 mol%-40 mol%) red-emitting phosphors were synthesized by means of a high-temperature solid-state reaction.The structure,morphology,photoluminescence,thermal-stability properties,lifetime,and color-rendering of the prepared phosphors were investigated in detail.The La_(7)Ta_(3)W_(4)O_(30):Eu^(3+) phosphors show five emission peaks under near-ultraviolet(n-UV) at 397 nm,and these peaks are ascribed to the transitions of ^(5)D0-^(7)Fj(j=0,1,2,3 and 4) by Eu^(3+) ions.The optimal doping concentration of Eu^(3+) is 20 mol%,and the critical distance of the energy transfer between the Eu^(3+)ions was calculated to be 1.768 nm.The quenching temperature(T_(0.5)) of La_(7)Ta_(3)W_(4)O_(30):20 mol%Eu^(3+) is about 440 K.The quantum yield(QY) was measured to be 85.85%.The fabricated white-light-emitting diodes(w-LEDs) possess high color-rendering index(R_(a)) of 90,and high correlated color temperature(CCT) of 5810 K,respectively.The Commission Internationale de L’Eclairage(CIE) coordinates are(0.311,0.322).Therefore,the prepared phosphor has a promising application for w-LEDs.
基金the National"12th Five-year"Science and Technology Support Program of China(No.2011BAE22B03-3)the Project of Chong qing Scientific and Technological Commission(No.CSTC2010AA4048)
文摘A red-emitting phosphor GdNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction technique. The phosphor was characterized by X-ray diffraction (XRD), particle size analyzer and fluorescence spectrometer. The single phase of GdNbO4:Eu3+,Bi3+ was obtained at 1150~C and the average particle diameter was about 2.30 μm. Excitation and emission spectra reveal that the phosphor can be ef- ficiently excited by ultraviolet (UV) light (394 nm) and emit the strong red light of 612 nm due to the Eu3+ transition of SD0~TF2. The opti- mum content of Eu3+ doped in the phosphor GdNbOn:Eu3+ is 20mo1%. The phosphor Gdo.80NbO4:0.20Eu3+,0.03Bi3+ shows much stronger photoluminescence intensity and better chromaticity coordinates (x=0.642, 0.352) than GdNbO4:Eu3+. It is confirmed that Gdo.80NbO4:0.20Eu3+,0.03Bi3+ is a potential candidate for near-UV chip-based white light emitting diodes.
基金financially supported by the National Natural Science Foundation of China(52072101,51972088,U20A20122 and U1663225)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of Education+2 种基金the Program of Introducing Talents of Discipline to Universities-Plan 111(Grant No.B20002)from the Ministry of Science and Technology and the Ministry of Education of ChinaHubei Provincial Department of Education for the“Chutian Scholar”programsupported by the European Commission Interreg V FranceWallonie-Vlaanderen project“Depollut Air”。
文摘Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications.
文摘A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.
基金Funded by the National Natural Science Foundation of China(No.52272072)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-13)。
文摘A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.
基金financially supported by the National Natural Science Foundation of China (52172192)the Young Top-Notch Talent of National Ten Thousand Talent Program (W03070054)。
文摘Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region,China(Grant No.NJZY23100)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2024FX_(3)0)the 14th Five Year Plan Project for Education Science in Inner Mongolia Autonomous Region,China(Grant No.NGJGH2023205).
文摘Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),variations in the light-emitting regimes of bubbles were noted to correspond with increments in the driving acoustic intensity.Specifically,the bubbles were observed to perform a dance-like motion 2 cm below the multi-bubble sonoluminescence(MBSL)cluster,traversing a 25-mm^(2) grid during the camera exposure period.Spectral analysis conducted at the beginning of the experiment showed a gradual attenuation of CN(B^(2)S–X^(2)S)emission concurrent with a strengthening of Ar(4p–4s)atom emission lines.The application of a theoretical temperature model to the spectral data revealed that the internal temperature of the bubbles escalates swiftly upon their implosion.This study is instrumental in advancing the comprehension of the underlying mechanisms of sonoluminescence and in the formulation of a dynamic model for the behavior of the bubbles.
基金supported by the National High Technology Research and Development Program of China(Grant No.2013AA014201)the Natural Science Foundation of Tianjin City,China(Grant Nos.11JCYBJC00300 and 14JCZDJC31200)the National Key Foundation for Exploring Scientific Instrument of China(Grant No.2014YQ120351)
文摘A series of Al3+-doped 3.5MgO·0.5MgF2·GeO2:Mn4+red-emitting phosphors is synthesized by high temperature solid-state reaction. The broad excitation band at 300 nm–380 nm, resulting from the4A2→4T1transition of Mn4+,exhibits a blue shift with the increase of Al2O3 content. The observation of the decreased Mn4+–O2-distance is explained by the crystal field theory. The temperature-dependent photoluminescence spectra with various amounts of Al2O3 content are comparatively measured and the calculation shows that the activation energy increases up to 0.41 eV at the Al2O3 content of 0.1 mol. The maximum phonon densities of state for these samples are calculated from Raman spectra and they are correlated with the thermal properties.
基金the National Science Council of Taiwan (NSC95 -2113-M-009-024-MY3)
文摘The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.
基金National Natural Science Foundation of China,Grant/Award Number:NSFC‐U1904215National Research Foundation of Korea,Grant/Award Number:2021R1A2C2012127。
文摘Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides.
基金Funded by the Science and Technology Bureau of Chengdu City(No.2022-YF05-02119-SN)。
文摘A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).
基金Project supported by the National Natural Science Foundation of China(22165031,21761034)NationalUndergraduate Innovation and Entrepreneurship Foundation(202210673034)Scientific Research Foundation of Education Departmentof Yunnan province(2022Y001)。
文摘At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a microwave-assisted fast synthesis approach to obtain a Sm^(3+)-activated borotellurate Na_(2)Y_(2)TeO_(4)(BO_(3))_(2)(NYTB)red phosphor with high crystallinity,excellent thermostability,and low chromaticity shift.For the NYTB-based phosphor,in contrast to the conventional solid-state synthesis,the microwave-assisted synthesis method involves lower synthesis temperature and shorter processing time.Additionally,the concentration quenching mechanism was determined.The w-LED device packaged with the studied phosphor exhibits a near-standard white light with proper CCT and high Ra parameters.
文摘The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the pure YAG phase exists at a relatively lower sintering temperature of 1400 ℃. The smaller sizes of phosphors in the ranges of 1 - 3 μm are obtained due to the contribution of seeding effects of nano-sized alumina particles to strengthen each step of the processes. Both the excitation and emission spectra of photoluminescence of the phosphor obtained at 1400 ℃ meet well with the spectroscopic requirements of the WLED phosphors.